Ionics

pp 1–11 | Cite as

One-step synthesis of PEDOT-PSS●TiO2 by peroxotitanium acid: a highly stable electrode for a supercapacitor

Original Paper
  • 113 Downloads

Abstract

Pseudo capacitors can reserve high energy and power densities with a high efficiency, and a long life period. In this work, a hybrid material of poly (3,4-ethylenedioxythiophene) (PEDOT)-poly(4-styrene sulfonic acid) (PSS)-titanium dioxide (TiO2) was synthesized by the facile one-pot method by novel and low-cost oxidant peroxotitanium acid (PTiA) for the first time. PTiA acts as both oxidant and source for TiO2. XRD, EDAX, and XPS analysis supported the formation of the hybrid material. The hybrid material showed bundles of nanofibers morphology and stable up to 315 °C. This hybrid material was explored as a stable electrode material in symmetric supercapacitor cell configuration. This device showed a specific capacitance (SC) of 162 F g−1 at a current density of 0.25 A g−1. Subjected the call for 38,000 charge–discharge (CD) cycles at a higher current density of 1.25 A g−1 and it showed 52% retention of initial capacitance (125 F g−1).

Graphical abstract

Keywords

Capacitors XRD Electrochemical characterizations Thermal analyses 

Notes

Acknowledgements

We are thankful to Dr. S. Chandrasekhar, Director, Dr. T. Shekharam, Head, PFM Division, CSIR-IICT, Hyderabad for their support.

Supplementary material

11581_2017_2289_MOESM1_ESM.doc (172 kb)
ESM 1 (DOC 171 kb)

References

  1. 1.
    Haozhe Z, Wenda Q, Yifeng Z, Yi H, Minghao Y, Zifan W, Xihong L, Yexiang T (2016) Surface engineering of carbon fiber paper for efficient capacitive energy storage. J Mater Chem A 4:18639–18645CrossRefGoogle Scholar
  2. 2.
    Minghao Y, Dun L, Haobin F, Yinxiang Z, Yexiang T, Xihong L (2017) Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew Chem Int Ed 56:5454CrossRefGoogle Scholar
  3. 3.
    Minghao Y, Shaobin Z, Haobin F, Le H, Xiyue Z, Yinxiang Z, Yexiang T, Xihong L (2017) Engineering thin MoS2 nanosheets on TiN nanorods: advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett 2:1862–1868CrossRefGoogle Scholar
  4. 4.
    Qiu JL, Tian W, Diana NHT, Fan D, Yu XZ, Dusan L (2017) Silicon diatoms with morphology-controlled MnO2 modified for high-performance asymmetric supercapacitors. J Mater Chem A 5:10856–10865CrossRefGoogle Scholar
  5. 5.
    Weina X, Shuge D, Guanlin L, Yi X, Chenguo H, Xue W (2016) CuO Nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim Acta 203:1–8CrossRefGoogle Scholar
  6. 6.
    Teng Z, Liming W, Shuo S, Qi C, Jiao S, Qiuying X, Hui X (2017) Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater 29:1604167CrossRefGoogle Scholar
  7. 7.
    Yinxiang Z, Minghao Y, Yue M, Pingping F, Xihong L, Tong Y (2016) Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 6:1601053CrossRefGoogle Scholar
  8. 8.
    Ramakrishnan R, Devaki SJ, Aashish A, Thomas S, Varma MR, Najiya KPP (2016) Nanostructured semiconducting PEDOT−TiO2/ZnO hybrid composites for nano device applications. J Phys Chem C 120:4199–4210CrossRefGoogle Scholar
  9. 9.
    Yin HE, Huang FH, Chiu WY (2012) Hydrophobic and flexible conductive films consisting of PEDOT: PSS-PBA/fluorine-modified silica and their performance in weather stability. J Mater Chem 22:14042–14051CrossRefGoogle Scholar
  10. 10.
    Cho S, Kim M, Jang J (2015) Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT: PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl Mater Interfaces 7:10213–10227CrossRefGoogle Scholar
  11. 11.
    Sunqi L, Fei T, Juan X, Zailun L, Yongfa Z (2015) Electrochemical properties of novel titania nanostructures. Nanotechnology 26:225603CrossRefGoogle Scholar
  12. 12.
    Sun H, Yu Y, Luo J, Ahmad M, Zhu J (2012) Morphology-controlled synthesis of ZnO 3D hierarchical structures and their photo catalytic performance. Cryst Eng Comm 14:8626–8632CrossRefGoogle Scholar
  13. 13.
    Tian J, Lv L, Wang X, Fei C, Liu X, Zhao Z, Wang Y, Cao G (2014) Microsphere light-scattering layer assembled by ZnO nano sheets for the construction of high efficiency (>5%) quantum dots sensitized solar cells. J Phys Chem C 118:16611–16617CrossRefGoogle Scholar
  14. 14.
    Liu B, Wang Z, Dong Y, Zhu Y, Gong Y, Ran S, Liu Z, Xu J, Xie Z, Chen D, Shen G (2012) ZnO-nanoparticle-assembled cloth for flexible photo detectors and recyclable photo catalysts. J Mater Chem 22:9379–9384CrossRefGoogle Scholar
  15. 15.
    Xiao YL, Jia HP, Yu XZ (2016) One-pot synthesis for Lysie-capped Au-TiO2 binary nanocomposites. Ceram Int 42:19450–19453CrossRefGoogle Scholar
  16. 16.
    Tao F, Shen Y, Liang Y, Li H (2007) Synthesis and characterization of Co(OH)2/TiO2 nanotube composites as supercapacitor materials. J. Solid State Electrochem 11:853–858Google Scholar
  17. 17.
    McNeill R, Weiss DE, Wardlaw JH, Siudak R (1963) Electronic conduction in polymers. The chemical structure of polypyrrole. Austrian J Chem 16:1056–1075CrossRefGoogle Scholar
  18. 18.
    Bian C, Yu A, Wu H (2009) Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors Electrochem. Commun 11:266–269Google Scholar
  19. 19.
    Xiao LG, Min K, Fei L, Xiao YL, Yu XZ, Fan D, Dusan L (2016) Engineering of three dimensional (3-D) diatom@TiO2@MnO2 composites with enhanced supercapacitor performance. Electrochim Acta 190:159–167CrossRefGoogle Scholar
  20. 20.
    Yu XZ, Xiao DH, Zeng PD (2014) Templated self-assembly of Au–TiO2 binary nanoparticles–nanotubes. Chin Chem Lett 25:874–878CrossRefGoogle Scholar
  21. 21.
    Jafari F, Behjat A, Khoshroo AR, Ghoshani M (2015) A dye-sensitized solar cell based on natural photosensitizers and a PEDOT:PSS/TiO2 film as a counter electrode. Eur Phys J Appl Phys 69:20502 (6pp)CrossRefGoogle Scholar
  22. 22.
    Maiaugree W, Pimanpang S, Towannang M, Saekow S, Jarernboon W, Bamrung VA (2012) Optimization of TiO2 nanoparticle mixed PEDOT–PSS counter electrodes for high efficiency dye sensitized solar cell. J Non-Cryst Solids 17:2489–2495CrossRefGoogle Scholar
  23. 23.
    Shunjian X, Yufeng L, Wei Z, Zonghu X, Yongping L, Hui O (2016) Nano porous TiO2/SnO2/Poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate composites as efficient counter electrode for dye-sensitized solar cells. Journal of Nano science and Nanotechnology 16:392–399CrossRefGoogle Scholar
  24. 24.
    Seo HW, Son MK, Itagaki N, Koga K, Shiratani M (2016) Polymer counter electrode of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) containing TiO2 nano-particles for dye-sensitized solar cells. J Power Sources 307:25–30CrossRefGoogle Scholar
  25. 25.
    Han L, Li X, Ma J, Yu Y, Lu J (2015) An in-situ synthesized PEDOT:PSS/TiO2 nanocomposite film by electro polymerization and its enhanced electrochromic properties. Nano Sci Nanotechnol Lett 7:308–313CrossRefGoogle Scholar
  26. 26.
    Park Y, Meskamp LM, Vandewal K, Leo K (2016) PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic photovoltaics. Appl Phys Lett 108:253302CrossRefGoogle Scholar
  27. 27.
    Liu C, Su Z, Li W, Jin F, Chu B, Wang J, Zhao H, Lee CS, Tang J, Kang B (2016) Improved performance of perovskite solar cells with a TiO2/MoO3 core/shell nanoparticles doped PEDOT:PSS hole-transporter. Org Electron 33:221–226CrossRefGoogle Scholar
  28. 28.
    Trzciński K, Oleksiak AL (2015) Electrochemical characterization of a composite comprising PEDOT/PSS and N doped TiO2 performed in aqueous and non-aqueous electrolytes. Synth Met 209:399–404CrossRefGoogle Scholar
  29. 29.
    Zhao Z, Richardson GF, Meng Q, Zhu S, Kuan HC, Ma J (2016) PEDOT based composites as electrode materials for supercapacitors. Nanotechnology 27:042001 (19pp)CrossRefGoogle Scholar
  30. 30.
    Yin C, Yang C, Jiang M, Deng C, Yang L, Li J, Qian D (2016) A novel and facile one-pot solvothermal synthesis of PEDOT–PSS/Ni–Mn–Co–O hybrid as an advanced supercapacitor electrode material. ACS Appl Mater 8(4):2741–2752CrossRefGoogle Scholar
  31. 31.
    Yu ZN, Li C, Abbitt D, Thomas J (2014) Flexible, sandwich-like Ag nanowire/PEDOT:PSS-nano pillar/MnO2 high performance supercapacitors. J Mater Chem A 2:10923–10929CrossRefGoogle Scholar
  32. 32.
    Su ZJ, Yang C, Xu CQ, Wu HY, Zhang ZX, Liu T, Zhang C, Yang QH, Li BH, Kang FY (2013) Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. J Mater Chem A 1:12432–12440CrossRefGoogle Scholar
  33. 33.
    Ichinose H, Terasaki M, Katsuki H (2001) Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate. J Sol-Gel Sci Technol 22:33–40CrossRefGoogle Scholar
  34. 34.
    Jin Z, Tingting Z, Wei X, Zhaohui L, Honglong S, Shuping Z (2015) Activated polyaniline-based carbon nanoparticles for high performance supercapacitors. Electrochim Acta 160:152–159CrossRefGoogle Scholar
  35. 35.
    Zhiyong G, Xiao L, Jiuli C, Dapeng W, Fang X, Lingcui Z, Weimin D, Kai J (2017) Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J Power Sources 337:25–35CrossRefGoogle Scholar
  36. 36.
    Singu BS, Palaniappan S, Yoon KR (2016) Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials. J Solid State Electrochem 20:3447–3457CrossRefGoogle Scholar
  37. 37.
    Geng JW, Ye YJ, Guo D, Liu XX (2017) Concurrent electro polymerization of aniline and electrochemical deposition of tungsten oxide for supercapacitor. J Power Sources 342:980–989CrossRefGoogle Scholar
  38. 38.
    Martin DC, Wu J, Shaw CM, King Z, Spanninga SA, Burns SR, Hendricks J, Yang J (2010) The morphology of poly (3, 4-ethylenedioxythiophene). Polym Rev 50:340–384CrossRefGoogle Scholar
  39. 39.
    Aasmundtveit KE, Samuelsen EJ, Pettersson LAA, Inganas O, Johansson T, Feidenhans'l R (1999) Structure of thin films of poly (3,4-ethylenedioxythiophene). Synth Met 101:561–564CrossRefGoogle Scholar
  40. 40.
    Fargol HB, Yue Z, Jung HK, Ziqi S, Victor M, Seyed HA, Yoon-UH MI, Shi XD (2013) Aqueous colloidal stability evaluated by zeta potential measurement and resultant TiO2 for superior photovoltaic performance. J Am Ceram Soc 96:2636–2643CrossRefGoogle Scholar
  41. 41.
    Nguyen TP, deVos SA (2004) An investigation into the effect of chemical and thermal treatments on the structural changes of poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate and consequences on its use on indium tin oxide substrates. Appl Surf Sci 221:330–339CrossRefGoogle Scholar
  42. 42.
    Ajimsha RS, Joshi MP, Mohan SR, Amit KD, Misra P, Kukreja LM, Phase DM (2015) Band offset at TiO2/MDMO PPV and TiO2/PEDOT PSS interfaces studied using photoelectron spectroscopy. RSC Adv 5:97891–97897CrossRefGoogle Scholar
  43. 43.
    Khan MA, Armes SP, Perruchot C, Ouamara H, Chehimi MM, Greaves SJ, Watts JF (2000) Surface characterization of poly(3,4-ethylenedioxythiophene)-coated latexes by X-ray photoelectron spectroscopy. Langmuir 16:4171–4179CrossRefGoogle Scholar
  44. 44.
    Scavetta E, Mazzoni R, Mariani F, Margutta RG, Bonfiglio A, Demelas M, Fiorilli S, Marzocchi M, Fraboni B (2014) Dopamine amperometric detection at a ferrocene clicked PEDOT:PSS coated electrode. J Mater Chem B 2:2861–2867CrossRefGoogle Scholar
  45. 45.
    De Y, Yanhong L, Ying L, Renfu Z, Baisong G, Zhiguo W, Jun W, Pingyuan R, Pengxun Y (2015) Design and influence of mass ratio on supercapacitive properties of ternary electrode material reduced graphene oxide@MnO2@ poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Electrochim Acta 169:317–325CrossRefGoogle Scholar
  46. 46.
    Xinga W, Huang CC, Zhuo SP, Yuana X, Wang GQ, Jurcakovac DH, Yan ZF, Lu GQ (2009) Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 47:1715–1722CrossRefGoogle Scholar
  47. 47.
    Ian GW, Ying Y, Zheng HH, Feiyu K (2012) Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. J Mater Chem 22:16943–16949CrossRefGoogle Scholar
  48. 48.
    Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641CrossRefGoogle Scholar
  49. 49.
    Yong W, Long J, Yechun W (2016) Development of candle soot based carbon nanoparticles (CNPs)/polyaniline electrode and its comparative study with CNPs/MnO2 in supercapacitors. Electrochim Acta 210:190–198CrossRefGoogle Scholar
  50. 50.
    Hao C, Min Z, Zhao W, Shiyong Z, Shiyou G (2014) Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors. Electrochim Acta 148:187–194CrossRefGoogle Scholar
  51. 51.
    Dipali SP, Sachin AP, Jiyoung H, Jin HK, Pramod SP, Jae CS (2016) Silver incorporated PEDOT:PSS for enhanced electrochemical performance. J Ind Eng Chem 42:113–120CrossRefGoogle Scholar
  52. 52.
    He X, Yang CP, Zhang GL, Shi DW, Huang QA, Xiao HB, Liu Y, Xiong R (2016) Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment. Mater Des 106:74–80CrossRefGoogle Scholar
  53. 53.
    Umashankar M, Palaniappan S, Sydulu SB (2015) Incorporation of polyaniline nanofibres on graphene oxide by interfacial polymerization pathway for supercapacitor. Inter Natl Nano Lett 5:231–240CrossRefGoogle Scholar
  54. 54.
    Lu X, Dou H, Yuan C, Yang S, Hao L, Zhang F, Shen L, Zhang L, Zhang X (2012) Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sources 197:319–324CrossRefGoogle Scholar
  55. 55.
    Susmitha U, Umashankar M, Palaniappan S (2014) Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application. Electrochemical Acta 146:242–248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Polymers & Functional Materials DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  2. 2.CSIR – Network Institutes for Solar EnergyNew DelhiIndia
  3. 3.Department of Inorganic and Analytical chemistryAndhra UniversityVisakhapatnamIndia

Personalised recommendations