Advertisement

Ionics

, Volume 24, Issue 4, pp 1065–1074 | Cite as

Evaluation of NaFeTiO4 as an electrode for energy storage application

  • Biswajit Mandal
  • Awalendra K. Thakur
Original Paper
  • 235 Downloads

Abstract

We report a polycrystalline NaFeTiO4 prepared via conventional solid-state reaction route. X-ray diffraction (XRD) results and Rietveld refinement confirmed single-phase NaFeTiO4 having an orthorhombic unit cell with lattice parameters a = 9.17051 Å, b = 2.96310 Å, and c = 10.73676 Å and Pnma space group (No. 62). Energy dispersive spectrum (EDS) yielded sample stoichiometry that agrees well with its molecular formula. The surface morphology indicated a cylindrical rod-like microstructure comprising well-defined grains having variable dimension, i.e., diameter ~ 250 to 350 nm and length ~ 1 to 5 μm. Vibrational spectroscopy (FTIR/Raman) results indicated presence of FeO6 and TiO6 octahedra in good agreement with crystallographic study. Brunner-Emmet-Teller (BET) surface area measurement yielded a specific surface area as high as ~ 4.28 m2 g−1. Electrical impedance spectrum indicated presence of grains separated by well-defined grain boundaries in agreement with microstructural analysis. Electrical conductivity of the material was estimated to be ~ 6.05 × 10−6 S cm−1. The structural model obtained using XRD and vibrational spectrum results suggest layered tunnel/cage structure of cage dimension ~ 4.65 Å, along [010] direction in the xz plane, which is larger than the size of Na+ ion (0.98 Å). So, easier Na+ migration feasibility exists in NaFeTiO4 crystal lattice making it a good candidate for electrode applications.

Keywords

Batteries Sodium Electrodes Renewable energy Earth abundant 

Notes

Acknowledgements

Biswajit Mandal is thankful to the Ministry of Human Resource and Development (MHRD, India) for the financial support. Authors are thankful to the instrument facility of the Indian Institute of Technology Patna for carrying out this work.

References

  1. 1.
    Li Y, Hu YS, Qi X, Rong X, Li H, Huang X, Chen L (2016) Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials 5:191–197CrossRefGoogle Scholar
  2. 2.
    Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRefGoogle Scholar
  3. 3.
    Xu S, Wang Y, Ben L, Lyu Y, Song N, Yang Z, Li Y, Mu L, Yang HT, Gu L, Hu YS, Li H, Cheng ZH, Chen L, Huang X (2015) Fe-based tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39]O2 designed by a new strategy as a cathode material for sodium-ion batteries. Adv Energy Mater 5:1501156–1501164CrossRefGoogle Scholar
  4. 4.
    Mu L, Xu S, Li Y, Hu YS, Li H, Chen L, Huang X (2015) Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv Mater 27:6928–6933CrossRefGoogle Scholar
  5. 5.
    Delmas C, Braconnier JJ, Fouassier C, Hagenmuller P (1981) Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 3–4:165CrossRefGoogle Scholar
  6. 6.
    Maazaz A, Delmas C, Hagenmuller P (1983) A study of the NaxTiO2 system by electrochemical deintercalation. J Incl Phenom 1:45–51CrossRefGoogle Scholar
  7. 7.
    Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nature Materials 10:74–80CrossRefGoogle Scholar
  8. 8.
    Caballero A, Hernan L, Morales J, Sanchez L, Pen JS, Aranda MAG (2002) Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J Mater Chem 12:1142–1147CrossRefGoogle Scholar
  9. 9.
    Wang Y, Liu J, Lee B, Qiao R, Yang Z, Xu S, Yu X, Gu L (2015) Ti-substituted tunnel-type Na0.44MnO2 oxide. Nat Commun 6:6401–6410CrossRefGoogle Scholar
  10. 10.
    Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517CrossRefGoogle Scholar
  11. 11.
    Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nature Communications 2:516CrossRefGoogle Scholar
  12. 12.
    Senguttuvan P, Rousse G, Seznec V, Tarascon JM, Palacín MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111CrossRefGoogle Scholar
  13. 13.
    Rudola A, Saravanan K, Devaraj S, Gong H, Balaya P (2013) Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. Chem Commun 49:7451–7453CrossRefGoogle Scholar
  14. 14.
    Reddy MV, Rao GVS, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar
  15. 15.
    Das R, Karna S, Lai YC, Chou FC (2016) Self-adjusted traveling solvent floating zone growth of single crystal CaFe2O4. Crystal Growth Design 16:499–503CrossRefGoogle Scholar
  16. 16.
    Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901CrossRefGoogle Scholar
  17. 17.
    Mueller-Buschbaum, Hk and Frerichs DZ (1993) Existenz des CaFe2O4-Typs von Verbindungen der Zusammensetzung NaA3+M4+O4. Roentgenstrukturanalysen von NaFeTiO4 und Na0.7(Fe, Al)0.7Ti1.3O4. Journal of Alloys Compounds 199:L5–L8Google Scholar
  18. 18.
    Knyazev AV, Chernorukov NG, Ladenkov IV, Belopol’skaya SS (2011) Synthesis, structure and thermal expansion of M2Fe2Ti6O16 and MFeTiO4 compounds. Inorg Mater 47:999–1005CrossRefGoogle Scholar
  19. 19.
    Deangelis BA, Newnham RE, William B (1972) Factor group analysis of the vibrational spectra of crystals: a review and consolidation. Am Mineral 57:255–268Google Scholar
  20. 20.
    Burba CM, Palmer JM, Holinsworth BS (2009) Laser-induced phase changes in olivine FePO4: a warning on characterizing LiFePO4-based cathodes with Raman spectroscopy. J Raman Spectrosc 40:225–228CrossRefGoogle Scholar
  21. 21.
    Ghosh S, Kamaraju N, Seto M, Fujimori A, Takeda Y, Ishiwata S, Kawasaki S, Azuma M, Takano M, Sood AK (2005) Raman scattering in CaFeO3 and La0.33Sr0.67FeO3 across the charge-disproportionation phase transition. Phys Rev B 71:245110–245116CrossRefGoogle Scholar
  22. 22.
    Qin S, Wu X, Seifert F, Becerro AI (2002) Micro-Raman study of perovskites in the CaTiO3–SrTiO3 system. Journal of Chemical Society Dalton Transections:3751–3755Google Scholar
  23. 23.
    Tu CS, Guo AR, Tao R, Katiyar RS (1996) Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals. J Appl Phys 79:3235–3240CrossRefGoogle Scholar
  24. 24.
    Andrews L (1969) Infrared spectra and bonding in the sodium superoxide and sodium peroxide molecules. J Phys Chem 73:3922–3928CrossRefGoogle Scholar
  25. 25.
    Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Zhang P, Shao C, Liu Y (2011) Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nano 3:5034–5040Google Scholar
  26. 26.
    Tu CS, Guo AR, Tao R, Katiyar RS (1996) Infrared spectra and bonding in the sodium superoxide and sodium peroxide molecules. J Appl Phys 79:3235–3240CrossRefGoogle Scholar
  27. 27.
    Rao BVJ (1964) Properties and structure of glasses in the binary systems alkali-TiO2. J Am Ceram Soc 47:455–463CrossRefGoogle Scholar
  28. 28.
    Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Transections:3898–3901Google Scholar
  29. 29.
    Sun ZP, Liu L, Zhang L, Jia DZ (2006) Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology 17:2266–2270CrossRefGoogle Scholar
  30. 30.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multi-molecular layers. Journal of American Chemical Society 60:309–319CrossRefGoogle Scholar
  31. 31.
    Zhang BH, Liu Y, Chang Z, Yang YQ, Wen ZB, Wua YP, Holze R (2014) Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J Power Sources 253:98–103CrossRefGoogle Scholar
  32. 32.
    Lagergren C, Lundblad A, Bergman B (1994) Synthesis and performance of LiCoO2 cathodes for the molten carbonate fuel cell. Journal of Electrochemical Society 141:2959–2966CrossRefGoogle Scholar
  33. 33.
    Manev V, Banov B, Momchilov A, Nassalevska A (1995) LiMn204 for 4 V lithium-ion batteries. J Power Sources 57:99–103CrossRefGoogle Scholar
  34. 34.
    Kim D, Lee E, Slater M, Lu W, Rood S, Johnson CS (2012) Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem Commun 18:66–69CrossRefGoogle Scholar
  35. 35.
    Hosono E, Saito T, Hoshino J, Okubo M, Saito Y, Nishio-Hamane D, Kudo T, Haoshen Z (2012) High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. J Power Sources 217:43–46CrossRefGoogle Scholar
  36. 36.
    Guo YG, Hu YS, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun:2783–2785Google Scholar
  37. 37.
    Brahma S, Choudhary RNP, Thakur AK (2005) AC impedance analysis of LaLiMo2O8 electroceramics. Physica B 355:188–201CrossRefGoogle Scholar
  38. 38.
    Yang Y, Liao S, Shi W, Wu Y, Zhang R, Leng S (2017) Nitrogen-doped TiO2(B) nanorods as high performance anode materials for rechargeable sodium-ion batteries. RSC Adv 7:10885–10890CrossRefGoogle Scholar
  39. 39.
    Pan H, Lu X, Yu X, Hu YS, Li H, Yang XQ, Chen L (2013) Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv Energy Mater 3:1186–1194CrossRefGoogle Scholar
  40. 40.
    Zhen L, Xu CY, Wang WS, Lao CS, Kuang Q (2009) Electrical and photocatalytic properties of Na2Ti6O13 nanobelts prepared by molten salt synthesis. Appl Surf Sci 255:4149–4152CrossRefGoogle Scholar
  41. 41.
    Wang J, Qiu B, He X, Risthaus T, Liu H, Stan MC, Schulze S, Xia Y, Liu Z, Winter M, Li J (2015) Low-Cost orthorhombic Nax[FeTi]O4 (x=1 and 4/3) compounds as anode materials for sodium ion batteries. Chem Mater 27:4374–4379CrossRefGoogle Scholar
  42. 42.
    Hou X, Li C, Xu H, Xu L (2017) NaFeTiO4 nanorod/multi-walled carbon nanotubes composites as an anode materials for sodium-ion batteries with high performance in both half and full cells. Nano Res.  https://doi.org/10.1007/s12274-017-1569-4

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology PatnaBihtaIndia

Personalised recommendations