, Volume 24, Issue 4, pp 1173–1180 | Cite as

Synthesis and characterization of cross-linked quaternized chitosan/poly(diallyldimethylammonium chloride) blend anion-exchange membranes

  • Yuan Yuan
  • Chunhui Shen
  • Jiqin Chen
  • Xuechao Ren
Original Paper


Novel alkaline anion-exchange membranes composed of quaternized chitosan and poly(diallyldimethylammonium chloride) were prepared by a combined thermal and chemical cross-linking technique. The hydroxide conductivity (σ), water uptake (WU), ion exchange capacity (IEC), thermal stability, mechanical property, alkaline stability of HTCC/PDDA-OH membranes were measured to evaluate their applicability in alkaline fuel cells. FTIR, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were also used to investigate the relation between the inner structure and performance of the blend membranes. The HTCC/PDDA-OH membranes show a high OH conductivity up to 37.9 mS cm−1 at 80 °C (1:0.5 by mass). By cross-linking modification, the membranes exhibit excellent thermal stability with onset degradation temperature above 200 °C and good alkaline resistance in 8M KOH solution at 80 °C, decreasing slightly for hydroxide conductivity during 350 h. Meanwhile, the membranes show outstanding mechanical properties, the maximum tensile strength can reach 25.31 MPa and elongation at break is 6.58%.


Quaternized chitosan Poly(diallyldimethylammonium chloride) Combined cross-linking Anion-exchange membrane Fuel cells 



The present work has been financially supported by the China Scholarship Council (CSC) under project no. 201506955014.


  1. 1.
    Shi B, Li Y, Zhang H et al (2016) Tuning the performance of anion exchange membranes by embedding multifunctional nanotubes into a polymer matrix. J Membr Sci 498:242–253CrossRefGoogle Scholar
  2. 2.
    Lin CX, Zhuo YZ, Hu EN et al (2017) Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability. J Membr Sci 539:24–33Google Scholar
  3. 3.
    Guo D, Zhuo YZ, Lai AN et al (2016) Interpenetrating anion exchange membranes using poly (1-vinylimidazole) as bifunctional crosslinker for fuel cells. J Membr Sci 518:295–304CrossRefGoogle Scholar
  4. 4.
    Yang C, Wang S, Ma W et al (2015) Comparison of alkaline stability of quaternary ammonium and 1,2-methylimidazolium-based alkaline anion exchange membranes. J Membr Sci 487:12–18CrossRefGoogle Scholar
  5. 5.
    Wang J, Wang J, Zhang S (2012) Synthesis and characterization of cross-linked poly (arylene ether ketone) containing pendant quaternary ammonium groups for anion-exchange membranes. J Membr Sci 415:205–212CrossRefGoogle Scholar
  6. 6.
    Lu S, Pan J, Huang A et al (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci 105(52):20611–20614CrossRefGoogle Scholar
  7. 7.
    Wang J, Wang J, Li S et al (2011) Poly (arylene ether sulfone) s ionomers with pendant quaternary ammonium groups for alkaline anion exchange membranes: preparation and stability issues. J Membr Sci 368(1):246–253CrossRefGoogle Scholar
  8. 8.
    Zhang H, Zhou Z (2008) Alkaline polymer electrolyte membranes from quaternized poly (pHthalazinone ether ketone) for direct methanol fuel cell. J Appl Polym Sci 110(3):1756–1762CrossRefGoogle Scholar
  9. 9.
    Kang JJ, Li WY, Lin Y et al (2004) Synthesis and ionic conductivity of a polysiloxane containing quaternary ammonium groups. Polym Adv Technol 15(1–2):61–64CrossRefGoogle Scholar
  10. 10.
    Wang G, Weng Y, Chu D et al (2009) Preparation of alkaline anion exchange membranes based on functional poly (ether-imide) polymers for potential fuel cell applications. J Membr Sci 326(1):4–8CrossRefGoogle Scholar
  11. 11.
    Li L, Wang Y (2005) Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci 262(1):1–4Google Scholar
  12. 12.
    Cheng J, He G, Zhang F (2015) A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies. Int J Hydrog Energy 40(23):7348–7360CrossRefGoogle Scholar
  13. 13.
    Yin S, Gao S, Shen C et al (2016) Synthesis and characterisation of chitosan–nitrogen polypHospHonic acid poly (organosiloxane) high temperature proton exchange membranes for fuel cells. Mater Technol 31(4):197–202Google Scholar
  14. 14.
    Wang B, Zhu Y, Zhou T et al (2016) Synthesis and properties of chitosan membranes modified by reactive cationic dyes as a novel alkaline exchange membrane for low temperature fuel cells. Int J Hydrog Energy 41(40):18166–18177CrossRefGoogle Scholar
  15. 15.
    Wang J, He R, Che Q (2011) Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene. J Colloid Interface Sci 361(1):219–225CrossRefGoogle Scholar
  16. 16.
    Wan Y, Peppley B, Creber KAM et al (2008) Quaternized-chitosan membranes for possible applications in alkaline fuel cells. J Power Sources 185(1):183–187CrossRefGoogle Scholar
  17. 17.
    Pandit S, Khilari S, Bera K et al (2014) Application of PVA–PDDA polymer electrolyte composite anion exchange membrane separator for improved bioelectricity production in a single chambered microbial fuel cell. Chem Eng J 257:138–147CrossRefGoogle Scholar
  18. 18.
    Lin YW, Lin Q, Jiang ZQ et al (2002) Preparation, moisture adsorbability and retentivity of 2-Hydroxypropyltrimethyl ammonium chloride chitosan. Chin J Appl Chem 19(4):351–354Google Scholar
  19. 19.
    Lim SH, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 339(2):313–319CrossRefGoogle Scholar
  20. 20.
    Wan Y, Peppley B, Creber KAM et al (2010) Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells. J Power Sources 195(12):3785–3793CrossRefGoogle Scholar
  21. 21.
    Santos JC, Vieira LMG, Panzera TH et al (2015) Hybrid glass fibre reinforced composites with micro and poly-diallyldimethylammonium chloride (PDDA) functionalized nano silica inclusions. Mater Des (1980–2015) 65:543–549CrossRefGoogle Scholar
  22. 22.
    Li W, Shen C, Gao S et al (2016) Preparation and characterization of phosphonic acid functionalized siloxane/polyimide composite proton exchange membranes. Solid State Ionics 287:1–7CrossRefGoogle Scholar
  23. 23.
    Ma Q, Wang B, Lv J et al (2017) A facile method modified PBO fibers by polysiloxane microtube. Mater Lett 202:52–54CrossRefGoogle Scholar
  24. 24.
    Xiong Y, Liu QL, Zhang QG et al (2008) Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources 183(2):447–453CrossRefGoogle Scholar
  25. 25.
    Tang R, Zhang Y, Zhang Y et al (2016) Synthesis and characterization of chitosan based dye containing quaternary ammonium group. Carbohydr Polym 139:191–196CrossRefGoogle Scholar
  26. 26.
    Li H, Shen C, Yin S et al (2016) Preparation of polysiloxane pHospHonic acid doped polybenzimidazole high temperature proton exchange membrane. J Appl Polym Sci 133(6):42956Google Scholar
  27. 27.
    Chrusciel JJ, Lesniak E (2015) Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog Polym Sci 41:67–121CrossRefGoogle Scholar
  28. 28.
    Li Z, He X, Jiang Z et al (2017) Enhancing hydroxide conductivity and stability of anion exchange membrane by blending quaternary ammonium functionalized polymers. Electrochim Acta 240:486–494CrossRefGoogle Scholar
  29. 29.
    Li Z, Jiang Z, Tian H et al (2015) Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly (ether ether ketone). J Power Sources 288:384–392CrossRefGoogle Scholar
  30. 30.
    Song F, Fu Y, Gao Y et al (2015) Novel alkaline anion-exchange membranes based on chitosan/ethenylmethylimidazolium chloride polymer with ethenylpyrrolidone composites for low temperature polymer electrolyte fuel cells. Electrochim Acta 177:137–144CrossRefGoogle Scholar
  31. 31.
    Zhang J, Qiao J, Jiang G et al (2013) Cross-linked poly (vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications. J Power Sources 240:359–367CrossRefGoogle Scholar
  32. 32.
    Yang G, Hao J, Cheng J et al (2016) Hydroxide ion transfer in anion exchange membrane: a density functional theory study. Int J Hydrog Energy 41(16):6877–6884CrossRefGoogle Scholar
  33. 33.
    Yang Z, Ran J, Wu B et al (2016) Stability challenge in anion exchange membrane for fuel cells. Curr Opin Chem Eng 12:22–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yuan Yuan
    • 1
  • Chunhui Shen
    • 1
  • Jiqin Chen
    • 1
  • Xuechao Ren
    • 1
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations