Advertisement

Ionics

, Volume 24, Issue 4, pp 1181–1193 | Cite as

Transport features in layered nickelates: correlation between structure, oxygen diffusion, electrical and electrochemical properties

  • V. A. Sadykov
  • E. M. Sadovskaya
  • E. Yu. Pikalova
  • A. A. Kolchugin
  • E. A. Filonova
  • S. M. Pikalov
  • N. F. Eremeev
  • A. V. Ishchenko
  • A. I. Lukashevich
  • J. M. Bassat
Original Paper

Abstract

Oxygen migration is increasingly acknowledged as playing an important role in the ionic transport in mixed conductors and influencing the electrode electrochemical performance. The aim of this work was to establish correlations between the structural and electrical properties of undoped (Ln2NiO4 + δ, Ln = La, Pr) and doped (La1.7M0.3NiO4 + δ, M = Ca, Sr, Ba, La0.85Pr0.85Ca0.3NiO4 + δ, Pr1.7Ca0.3NiO4 + δ) layered nickelates and the oxygen diffusion in these materials to determine what influences their electrochemical response. A new technique for temperature programmed isotope exchange of oxides with C18O2 in a flow reactor was applied to investigate oxygen mobility and surface reactivity in the polycrystalline powder samples which provided the means to experimentally demonstrate the appearance of two channels of oxygen migration in the doped materials via cooperative mechanism and via near-dopant position. The electrochemical performance of the electrodes based on the developed materials was found to exhibit a strong dependence on their oxygen transport characteristics.

Keywords

SOFC cathode Ln2NiO4 + δ Ruddlesden–Popper phase Isotope exchange Electrochemical performance 

Notes

Acknowledgements

The investigations of oxygen diffusion were supported by the Russian Science Foundation (project 16-13-00112) and structural, electrical, and electrochemical study were supported by the Russian Science Foundation (project 16-19-00104). The work was done using the facilities of the shared-access centers “Composition of compounds,” IHTE and “Ural-M,” IMET UB RAS. Financial support from the Government of the Russian Federation (Agreement 02.A03.21.0006, Act 211) is gratefully acknowledged. We are thankful to Bogdanovich N.M. and Demyanenko T.A. for the sample preparation and to Pelipenko V.V. for the temperature-programmed isotope exchange in closed reactors studies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lee Y, Kim H (2015) Electrochemical performance of La2NiO4+δ cathode for intermediate-temperature solid oxide fuel cells. Ceram Int 41:5984–5991.  https://doi.org/10.1016/j.ceramint.2015.01.037 CrossRefGoogle Scholar
  2. 2.
    Nicollet C, Flura A, Vibhu V et al (2015) La2NiO4+δ infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: electrochemical performance and impedance modelling. J Power Sources 294:473–482.  https://doi.org/10.1016/j.jpowsour.2015.06.077 CrossRefGoogle Scholar
  3. 3.
    Woolley RJ, Skinner SJ (2014) Functionally graded composite La2NiO4+δ and La4Ni3O10−δ solid oxide fuel cell cathodes. Solid State Ionics 255:1–5.  https://doi.org/10.1016/j.ssi.2013.11.041 CrossRefGoogle Scholar
  4. 4.
    Zhao K, Wang Y-P, Chen M et al (2014) Electrochemical evaluation of La2NiO4+δ as a cathode material for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 39:7120–7130.  https://doi.org/10.1016/j.ijhydene.2014.02.106 CrossRefGoogle Scholar
  5. 5.
    Philippeau B, Mauvy F, Mazataud C et al (2013) Comparative study of electrochemical properties of mixed conducting Ln2NiO4+δ (Ln=La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3−δ as SOFC cathodes associated to Ce0.9Gd0.1O2−δ, La0.8Sr0.2Ga0.8Mg0.2O3−δ and La9Sr1Si6O26.5 electrolytes. Solid State Ionics 249:17–25.  https://doi.org/10.1016/j.ssi.2013.06.009 CrossRefGoogle Scholar
  6. 6.
    Sayers R, De Souza RA, Kilner JA, Skinner SJ (2010) Low temperature diffusion and oxygen stoichiometry in lanthanum nickelate. Solid State Ionics 181:386–391.  https://doi.org/10.1016/j.ssi.2010.01.016 CrossRefGoogle Scholar
  7. 7.
    Skinner S, Kilner J (2000) Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics 135:709–712.  https://doi.org/10.1016/S0167-2738(00)00388-X CrossRefGoogle Scholar
  8. 8.
    Sadykov VA, Eremeev NF, Usol’tsev VV et al (2013) Mechanism of oxygen transfer in layered lanthanide nickelates Ln2−xNiO4+δ (Ln=La, Pr) and their nanocomposites with Ce0.9Gd0.1O2−δ and Y2(Ti0.8Zr0.2)1.6Mn0.4O7−δ solid electrolytes. Russ J Electrochem 49:645–651.  https://doi.org/10.1134/S1023193513070136 CrossRefGoogle Scholar
  9. 9.
    Li X, Benedek NA (2015) Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain. Chem Mater 27:2647–2652.  https://doi.org/10.1021/acs.chemmater.5b00445 CrossRefGoogle Scholar
  10. 10.
    Meng X, Lü S, Liu S et al (2015) Electrochemical characterization of B-site cation-excess Pr2Ni0.75Cu0.25Ga0.05O4+δ cathode for IT-SOFCs. Ceram Int 41:12107–12114.  https://doi.org/10.1016/j.ceramint.2015.06.028 CrossRefGoogle Scholar
  11. 11.
    Shen Y, Zhao H, Xu J et al (2014) Effect of ionic size of dopants on the lattice structure, electrical and electrochemical properties of La2−xMxNiO4+δ (M= Ba, Sr) cathode materials. Int J Hydrog Energy 39:1023–1029.  https://doi.org/10.1016/j.ijhydene.2013.10.153 CrossRefGoogle Scholar
  12. 12.
    Bhoga SS, Khandale AP, Pahune BS (2014) Investigation on Pr2−xSrxNiO4+δ (x=0.3–1.0) cathode materials for intermediate temperature solid oxide fuel cell. Solid State Ionics 262:340–344.  https://doi.org/10.1016/j.ssi.2013.09.041 CrossRefGoogle Scholar
  13. 13.
    Yang J, Cheng J, Jiang Q et al (2012) Preparation and electrochemical properties of strontium doped Pr2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 37:1746–1751.  https://doi.org/10.1016/j.ijhydene.2011.09.146 CrossRefGoogle Scholar
  14. 14.
    Kolchugin AА, Pikalova EY, Bogdanovich NM et al (2016) Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate. Solid State Ionics 288:48–53.  https://doi.org/10.1016/j.ssi.2016.01.035 CrossRefGoogle Scholar
  15. 15.
    Sadykov V, Okhlupin Y, Yeremeev N et al (2014) In situ X-ray diffraction studies of Pr2−xNiO4+δ crystal structure relaxation caused by oxygen loss. Solid State Ionics 262:918–922.  https://doi.org/10.1016/j.ssi.2014.02.001 CrossRefGoogle Scholar
  16. 16.
    Pikalova EY, Bogdanovich N, Kolchugin A et al (2014) Electrical and electrochemical properties of La2NiO4+δ-based cathodes in contact with Ce0.8Sm0.2O2-δ electrolyte. Procedia Eng 98:105–110.  https://doi.org/10.1016/j.proeng.2014.12.495 CrossRefGoogle Scholar
  17. 17.
    Pikalova EY, Medvedev DA, Khasanov AF (2017) Structure, stability and thermo-mechanical properties of Ca-substituted Pr2NiO4+δ. Phys Solid State 59:679–687CrossRefGoogle Scholar
  18. 18.
    Kravchenko E, Zakharchuk K, Viskup A et al (2016) Impact of oxygen defiency on the electrochemical high performance of K2NiF4-type (La1-xSrx)2NiO4-δ oxygen electrodes. Chem Suc Chem 10:600–611.  https://doi.org/10.1002/cssc.201601340 CrossRefGoogle Scholar
  19. 19.
    Gao Z, Mogni LV, Miller EC et al (2016) A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci 9:1602–1644.  https://doi.org/10.1039/C5EE03858H CrossRefGoogle Scholar
  20. 20.
    Adler SB (2000) Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics 135:603–612.  https://doi.org/10.1016/S0167-2738(00)00423-9 CrossRefGoogle Scholar
  21. 21.
    Hildenbrand N, Nammensma P, Blank DHA et al (2013) Influence of configuration and microstructure on performance of La2NiO4+δ intermediate-temperature solid oxide fuel cells cathodes. J Power Sources 238:442–453.  https://doi.org/10.1016/j.jpowsour.2013.03.192 CrossRefGoogle Scholar
  22. 22.
    Guan B, Li W, Zhang H, Liu X (2015) Oxygen reduction reaction kinetics in Sr-doped La2NiO4+δ Ruddlesden-Popper phase as cathode for solid oxide fuel cells. J Electrochem Soc 162:F707–F712.  https://doi.org/10.1149/2.0541507jes CrossRefGoogle Scholar
  23. 23.
    Flura A, Nicollet C, Vibhu V et al (2016) Application of the Adler-Lane-Steele model to porous La2NiO4+δ SOFC cathode: influence of interfaces with gadolinia doped ceria. J Electrochem Soc 163:F523–F532.  https://doi.org/10.1149/2.0891606jes CrossRefGoogle Scholar
  24. 24.
    Boehm E, Bassat J, Dordor P et al (2005) Oxygen diffusion and transport properties in non-stoichiometric LnNiO oxides. Solid State Ionics 176:2717–2725.  https://doi.org/10.1016/j.ssi.2005.06.033 CrossRefGoogle Scholar
  25. 25.
    Sadykov VA, Sadovskaya EM, Uvarov NF (2015) Methods of isotopic relaxations for estimation of oxygen diffusion coefficients in solid electrolytes and materials with mixed ionic-electronic conductivity. Russ J Electrochem 51:458–467.  https://doi.org/10.1134/S1023193515050109 CrossRefGoogle Scholar
  26. 26.
    Sadykov VA, Eremeev NF, Bolotov VA et al (2016) The effect of microwave sintering on stability and oxygen mobility of praseodymium nickelates-cobaltites and their nanocomposites. Solid State Ionics 288:76–81.  https://doi.org/10.1016/j.ssi.2016.02.003 CrossRefGoogle Scholar
  27. 27.
    Sadykov VA, Eremeev NF, Sadovskaya EM et al (2014) Cathodic materials for intermediate-temperature solid oxide fuel cells based on praseodymium nickelates-cobaltites. Russ J Electrochem 50:669–679.  https://doi.org/10.1134/S1023193514070131 CrossRefGoogle Scholar
  28. 28.
    Sadykov V, Eremeev N, Sadovskaya E et al (2015) Oxygen mobility and surface reactivity of PrNi1−xCoxO3−δ perovskites and their nanocomposites with Ce0.9Y0.1O2−δ by temperature-programmed isotope exchange experiments. Solid State Ionics 273:35–40.  https://doi.org/10.1016/j.ssi.2014.11.021 CrossRefGoogle Scholar
  29. 29.
    Sadykov V, Sadovskaya E, Bobin A et al (2015) Temperature-programmed C18O2 SSITKA for powders of fast oxide-ion conductors: estimation of oxygen self-diffusion coefficients. Solid State Ionics 271:69–72.  https://doi.org/10.1016/j.ssi.2014.11.004 CrossRefGoogle Scholar
  30. 30.
    Pikalova EY, Kolchugin AA, Bogdanovich NM, Bronin DI (2014) Electrical and electrochemical properties of La2–xCaxNiO4+δ and La2–xCaxNiO4+δ-Ce0.8Sm0.2O1.9 cathode materials for intermediate temperature SOFCs. Adv Sci Technol 93:25–30.  https://doi.org/10.4028/www.scientific.net/AST.93.25 CrossRefGoogle Scholar
  31. 31.
    Kolchugin AA, Pikalova EY, Bogdanovich NM, Bronin DI (2015) The effect of copper on the properties of La1.7Ca0.3NiO4+δ-based cathodes for solid oxide fuel cells. Russ J Electrochem 51:483–490.  https://doi.org/10.1134/S1023193515050067 CrossRefGoogle Scholar
  32. 32.
    Rice DE, Buttrey DJ (1993) An X-ray diffraction study of the oxygen content phase diagram of La2NiO4+δ. J Solid State Chem 105:197–210.  https://doi.org/10.1006/jssc.1993.1208 CrossRefGoogle Scholar
  33. 33.
    Sullivan JD, Buttrey DJ, Cox DE, Hriljac J (1991) A conventional and high-resolution synchrotron X-ray diffraction study of phase separations in Pr2NiO4+δ. J Solid State Chem 94:337–351.  https://doi.org/10.1016/0022-4596(91)90200-2 CrossRefGoogle Scholar
  34. 34.
    Allançon C, Odier P, Bassat JM, Loup JP (1997) La and Sr substituted Pr2NiO4+δ: oxygenation and electrical properties. J Solid State Chem 131:167–172.  https://doi.org/10.1006/jssc.1997.7402 CrossRefGoogle Scholar
  35. 35.
    Tang JP, Dass RI, Manthiram A (2000) Comparison of the crystal chemistry and electrical properties of La2−xAxNiO4 (A= Ca, Sr, and Ba). Mater Res Bull 35:411–424.  https://doi.org/10.1016/S0025-5408(00)00234-8 CrossRefGoogle Scholar
  36. 36.
    Shannon RD (1976) Revised effective ionic radii and systematic studies in interatomic distances in halides and chalcogenides. Acta Crust A32:751–767.  https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  37. 37.
    Muzykantov V, Popovskii V, Boreskov G (1964) Kinetics of isotope exchange in a molecular oxygen––solid oxide system. Kinet Catal 5:624–629Google Scholar
  38. 38.
    Bassat J-M, Petitjean M, Fouletier J et al (2005) Oxygen isotopic exchange: a useful tool for characterizing oxygen conducting oxides. Appl Catal A Gen 289:84–89.  https://doi.org/10.1016/j.apcata.2005.04.054 CrossRefGoogle Scholar
  39. 39.
    Boehm E (2002) Les nickelates A2MO4+ð, nouveaux matériaux de cathode pour piles à combustible SOFC moyenne température. Université Sciences et Technologies - Bordeaux I, LilleGoogle Scholar
  40. 40.
    Bassat JM, Odier P, Villesuzanne A et al (2004) Anisotropic ionic transport properties in La2NiO4+δ single crystals. Solid State Ionics 167:341–347.  https://doi.org/10.1016/j.ssi.2003.12.012 CrossRefGoogle Scholar
  41. 41.
    Xie W, Lee Y-L, Shao-Horn Y, Morgan D (2016) Oxygen point defect chemistry in Ruddlesden−Popper oxides (La1−xSrx)2MO4±δ (M= Co, Ni, Cu). J Phys Chem Lett 7:1939–1944.  https://doi.org/10.1021/acs.jpclett.6b00739 CrossRefGoogle Scholar
  42. 42.
    Minervini L, Grimes RW, Kilner JA, Sickafus KE (2000) Oxygen migration in La2NiO4+δ. J Mater Chem 10:2349–2354.  https://doi.org/10.1039/b004212i CrossRefGoogle Scholar
  43. 43.
    Lee D, Lee HN (2017) Controlling oxygen mobility in Ruddlesden–Popper oxides. Mater Des 10:368–390.  https://doi.org/10.3390/ma10040368 CrossRefGoogle Scholar
  44. 44.
    Shen Y, Zhao H, Liu X, Xu N (2010) Preparation and electrical properties of Ca-doped La2NiO4+δ cathode materials for IT-SOFC. Phys Chem Chem Phys 12:15124.  https://doi.org/10.1039/c0cp00261e CrossRefGoogle Scholar
  45. 45.
    Park J-C, Kim D-K, Byeon S-H, Kim D (2001) XANES study on Ruddlesden-Popper phase, Lan+1NinO3n+1 (n= 1, 2, and ∞). J Synchrotron Radiat 8:704–706.  https://doi.org/10.1107/S0909049500015983 CrossRefGoogle Scholar
  46. 46.
    Zhang Z, Greenblatt M (1994) Synthesis, structure, and physical properties of La3-xMxNi2O7-δ (M= Ca2+, Sr2+, Ba2+; 0 ≤ x ≤ 0.075). J Solid State Chem 111:141–146.  https://doi.org/10.1006/jssc.1994.1209 CrossRefGoogle Scholar
  47. 47.
    Nishiyama S, Sakaguchi D, Hattori T (1995) Electrical conduction and thermoelectricity of La2NiO4+δ and La2(Ni,Co)O4+δ. Solid State Commun 94:279–282.  https://doi.org/10.1016/0038-1098(95)00062-3 CrossRefGoogle Scholar
  48. 48.
    Boehm E, Bassat J-M, Steil MC et al (2003) Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci 5:973–981.  https://doi.org/10.1016/S1293-2558(03)00091-8 CrossRefGoogle Scholar
  49. 49.
    Sadykov VA, Pavlova SN, Kharlamova TS et al (2010) Perovskites and their nanocomposites with fluorite-like oxides as materials for solid oxide fuel cells cathodes and oxygen-conducting membranes: mobility and reactivity of the surface/bulk oxygen as a key factor of their performance. In: Borovski M (ed) Perovskites Struct. Prop. Uses. Nova Science Publishers, New York, pp 67–178Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • V. A. Sadykov
    • 1
    • 2
  • E. M. Sadovskaya
    • 1
    • 2
  • E. Yu. Pikalova
    • 3
    • 4
  • A. A. Kolchugin
    • 3
    • 4
  • E. A. Filonova
    • 4
  • S. M. Pikalov
    • 5
  • N. F. Eremeev
    • 1
  • A. V. Ishchenko
    • 1
    • 2
  • A. I. Lukashevich
    • 1
  • J. M. Bassat
    • 6
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of High Temperature Electrochemistry UB RASYekaterinburgRussia
  4. 4.Ural Federal UniversityYekaterinburgRussia
  5. 5.Institute of Metallurgy UB RASYekaterinburgRussia
  6. 6.Institut de Chimie de la Matière Condensée de BordeauxPessac CedexFrance

Personalised recommendations