, Volume 24, Issue 4, pp 1001–1006 | Cite as

Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate

  • Michael Gellert
  • Enkhetsetseg Dashjav
  • Daniel Grüner
  • Qianli Ma
  • Frank Tietz
Original Paper


The compatibility of the solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 (LATP) with the cathode materials LiCoO2, LiMn2O4, LiCoPO4, LiFePO4, and LiMn0.5Fe0.5PO4 was investigated in a co-sintering study. Mixtures of LATP and the different cathode materials were sintered at various temperatures and subsequently analyzed by thermal analysis, X-ray diffraction, and electron microscopy. Oxide cathode materials display a rapid decomposition reaction with the electrolyte material even at temperatures as low as 500 °C, while olivine cathode materials are much more stable. The oxide cathode materials tend to decompose to lithium-free compounds, leaving lithium to form Li3PO4 and other metal phosphates. In contrast, the olivine cathode materials decompose to mixed phosphates, which can, in part, still be electrochemically active. Among the olivine cathode materials, LiFePO4 demonstrated the most promising results. No secondary phases were detected by X-ray diffraction after sintering a LATP/LiFePO4 mixture at temperatures as high as 700 °C. Electron microscopy revealed a small secondary phase probably consisting of Li2FeTi(PO4)3, which is ionically conductive and should be electrochemically active as well.


Li-ion battery All-solid-state battery LATP Co-sintering Olivines 



We thank M. T. Gerhards for the DTA/TG measurements. We also thank the German Federal Ministry of Education and Research (BMBF) for the financial support (reference numbers 03XP0047B and 03XP0026E).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2017_2276_MOESM1_ESM.pdf (94 kb)
ESM 1 (PDF 94 kb)


  1. 1.
    Janek J, Zeier WG (2016) Nature Energy 1:16141CrossRefGoogle Scholar
  2. 2.
    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) Nature Energy 1:16030CrossRefGoogle Scholar
  3. 3.
    Kato Y, Kawamoto K, Kanno R, Hirayama M (2012) Electrochemistry 80(10):749CrossRefGoogle Scholar
  4. 4.
    Bron P, Dehnen S, Roling B (2016) J Power Sources 329:530CrossRefGoogle Scholar
  5. 5.
    Takada K, Ohta N, Zhang LQ, Xu XX, Hang BT, Ohnishi T, Osada M, Sasaki T (2012) Solid State Ionics 225:594CrossRefGoogle Scholar
  6. 6.
    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T (2007) Electrochem Commun 9(7):1486CrossRefGoogle Scholar
  7. 7.
    Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Solid State Ionics 182(1):116CrossRefGoogle Scholar
  8. 8.
    Tsai C-L, Dashjav E, Hammer E-M, Finsterbusch M, Tietz F, Uhlenbruck S, Buchkremer HP (2015) J Electroceram 35(1):25CrossRefGoogle Scholar
  9. 9.
    Lalère F, Leriche JB, Courty M, Boulineau S, Viallet V, Masquelier C, Seznec V (2014) J Power Sources 247:975CrossRefGoogle Scholar
  10. 10.
    Nagata K, Nanno T (2007) J Power Sources 174(2):832CrossRefGoogle Scholar
  11. 11.
    Han X, Gong Y, Fu K, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L (2017) Nat Mater 16(5):572CrossRefGoogle Scholar
  12. 12.
    Stramare S, Thangadurai V, Weppner W (2003) Chem Mater 15(21):3974CrossRefGoogle Scholar
  13. 13.
    Knauth P (2009) Solid State Ionics 180(14–16):911CrossRefGoogle Scholar
  14. 14.
    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi Gy (1990) J Electrochem Soc 137(4):1023CrossRefGoogle Scholar
  15. 15.
    Gellert M, Gries KI, Yada C, Rosciano F, Volz K, Roling B (2012) J Phys Chem C 116(43):22675CrossRefGoogle Scholar
  16. 16.
    Mariappan CR, Gellert M, Yada C, Rosciano F, Roling B (2012) Electrochem Commun 14(1):25CrossRefGoogle Scholar
  17. 17.
    Ma Q, Xu Q, Tsai C-L, Tietz F, Guillon O (2016) J Am Ceram Soc 99(2):410CrossRefGoogle Scholar
  18. 18.
    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell KG, Bucharsky EC, Hoffmann MJ, Ehrenberg H (2016) Inorg Chem 55(6):2941CrossRefGoogle Scholar
  19. 19.
    Epp V, Ma QL, Hammer EM, Tietz F, Wilkening M (2015) Phys Chem Chem Phys 17(48):32115CrossRefGoogle Scholar
  20. 20.
    Jimenez R, del Campo A, Calzada ML, Sanz J, Kobylianska SD, Solopan SO, Belous AG (2016) J Electrochem Soc 163(8):A1653CrossRefGoogle Scholar
  21. 21.
    Miara L, Windmüller A, Tsai C-L, Richards WD, Ma Q, Uhlenbruck S, Guillon O, Ceder G (2016) ACS Appl Mater Interfaces 8(40):26842CrossRefGoogle Scholar
  22. 22.
    Uhlenbruck S, Dornseiffer J, Lobe S, Dellen C, Tsai C-L, Gotzen B, Sebold D, Finsterbusch M, Guillon O (2016) Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries. J Electroceram 1–10.
  23. 23.
    Li Q, Chou S-L, Wang J-Z, Shi D, Liu H-K (2014) Solid State Ionics 268:117CrossRefGoogle Scholar
  24. 24.
    Hamdy MS, Amrollahi R, Mul G (2012) ACS Catal 2(12):2641CrossRefGoogle Scholar
  25. 25.
    Hu C, Wu Y, Dai Y (2014) Funct Mater Lett 07(02):1450016CrossRefGoogle Scholar
  26. 26.
    Catti M, Comotti A, Di Blas S, Ibberson RM (2004) J Mater Chem 14(5):835CrossRefGoogle Scholar
  27. 27.
    Catti M (2001) J Solid State Chem 156(2):305CrossRefGoogle Scholar
  28. 28.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144(4):1188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Michael Gellert
    • 1
  • Enkhetsetseg Dashjav
    • 1
  • Daniel Grüner
    • 2
  • Qianli Ma
    • 1
  • Frank Tietz
    • 1
    • 3
  1. 1.Forschungszentrum Jülich GmbH, Institute of Energy and Climate ResearchMaterials Synthesis and Processing (IEK-1)JülichGermany
  2. 2.Forschungszentrum Jülich GmbH, Institute of Energy and Climate ResearchMicrostructure and Properties of Materials (IEK-2)JülichGermany
  3. 3.Helmholtz-Institute MünsterForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations