, Volume 24, Issue 4, pp 1057–1064 | Cite as

Preparation of mesoporous carbon for improved-performance lithium-sulfur battery

  • Jing Zhang
  • Heqin Li
  • Zhiwei Lin
  • Qiong Tang
  • Zituo Liang
  • Pei Tang
  • Yangwu Tong
  • Yuanyuan Pan
Original Paper


A mesoporous carbon (MC) is prepared by the method of hard-template. Cathode materials (S/MC) for Li-S battery were synthesized. Properties of S, MC, and S/MC were characterized by BET, XRD, Raman, HRTEM, and FESEM. Electrochemical performances of the batteries were determined by AC impedance, cyclic voltammetry, and constant-current charging and discharging. Experiments show that MC, prepared with mass ratio CaCO3/PVA = 1/1.5, is the most suitable for Li-S battery. Thereby, the battery shows initial specific capacity of 1383.6 mAh/g and 881.6 mAh/g after 100 cycles, and the Coulombic efficiencies are both over 98% after 100 cycles at the current rate of 0.5 and 1 C.


Li-S battery Mesoporous carbon Specific capacity Coulombic efficiency 



The authors gratefully acknowledge the support of the "Student's Platform for Innovation and Entrepreneurship Training Program" of the Ministry of Education of China (No.201710359071).


  1. 1.
    Song MK, Zhang Y, Cairns EJ (2013) A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance. Nano Lett 13:5891CrossRefGoogle Scholar
  2. 2.
    Wei M, Yuan P, Chen W, Hu J, Mao J, Shao G (2015) Facile assembly of partly graphene-enveloped sulfur composites in double-solvent for lithium–sulfur batteries. Electrochim Acta 178:564CrossRefGoogle Scholar
  3. 3.
    Liu X, Shan Z, Zhu K, Du J, Tang Q, Tian J(2015) Sulfur electrode modified by bifunctional nafion/γ-Al 2 O 3 membrane for high performance lithium–sulfur batteries. J Power Sources 274:85CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al 2 O 3 -coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129: 55CrossRefGoogle Scholar
  5. 5.
    Bruce PG, Freunberger SA, Hardwick L J, Tarascon JM (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19CrossRefGoogle Scholar
  6. 6.
    Evers S, Nazar LF (2013) New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes. Accounts Chem Res 46:1135CrossRefGoogle Scholar
  7. 7.
    Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Edit 50:5904CrossRefGoogle Scholar
  8. 8.
    Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energ Environ Sci 3: 1531Google Scholar
  9. 9.
    Liang C, Dai S (2006) Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J Am Chem Soc 128:5316CrossRefGoogle Scholar
  10. 10.
    Li L, Li LY, Guo XD, Zhong BH, Chen Y X, Tang Y (2013) Synthesis and electrochemical performance of sulfur–carbon composite cathode for lithium–sulfur batteries. J Solid State Electr 17:115CrossRefGoogle Scholar
  11. 11.
    Ding B, Yuan C, Shen L, Xu G, Nie P, Zhang X (2013) Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries. Chem–Eur J 19: 1013Google Scholar
  12. 12.
    Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/Adsorption in nanoporous polysulfide sorbents for the Li−S Battery. J Phys Chem C 116:19653CrossRefGoogle Scholar
  13. 13.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500CrossRefGoogle Scholar
  14. 14.
    Wang DW, Zhou G, Li F, Wu KH, Lu GQ, Cheng HM, Gentle IR(2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries. Phys Chem Chem Phys 14:8703CrossRefGoogle Scholar
  15. 15.
    Zhao C, Wang W, Yu Z, Zhang H, Wang A, Yang Y (2010) Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. J Mater Chem 20: 976Google Scholar
  16. 16.
    Xu B, Peng L, Wang G, Cao G, Wu F (2010) Easy synthesis of mesoporous carbon using nano-CaCO3 as template. Carbon 48:2377Google Scholar
  17. 17.
    Shi JL, Tang C, Peng H J, Zhu L, Cheng XB, Huang JQ, Zhang Q (2015) Batteries: 3D Mesoporous Graphene: CVD Self-Assembly on Porous Oxide Templates and Applications in High-Stable Li-S Batteries. Small 11:5243Google Scholar
  18. 18.
    Tang C, Li B, Zhang Q, Zhu L, Wang H,  Shi J, Wei F (2016) CaO-Templated Growth of Hierarchical Porous Graphene for High-Power Lithium–Sulfur Battery Applications. Adv Funct Mater 26:577CrossRefGoogle Scholar
  19. 19.
    Strubel P, Thieme S, Biemelt T, Helmer A, Oschatz M, Brückner J, Althues H, Kaskel S (2015) ZnO Hard Templating for Synthesis of Hierarchical Porous Carbons with Tailored Porosity and High Performance in Lithium-Sulfur Battery. Adv Funct Mater 25:287CrossRefGoogle Scholar
  20. 20.
    Li LY, Chen YX, Zhong BH (2014) Synthesis and electrochemical performance of a simple and low-cost sulfur/porous carbon composite cathode for rechargeable lithium sulfur battery. Compos Part A 62:26Google Scholar
  21. 21.
    Park MS, Bo OJ, Kim TJ, Kim S, Kim KJ, Yu JS, Jung Y, Kim YJ (2014) Disordered mesoporous carbon as polysulfide reservoir for improved cyclic performance of lithium–sulfur batteries. Carbon 68:265CrossRefGoogle Scholar
  22. 22.
    Pognon G, Brousse T, Bélanger D (2011) Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors. Carbon 49:1340CrossRefGoogle Scholar
  23. 23.
    Yu JP, Zhang M, Ding F, Tang ZY, Liu XJ (2014) Effects of Carbon Interlayer on Electrochemical Performance ofLithium-Sulfur Cell. J Electrochem 20:105Google Scholar
  24. 24.
    Wang M, Zhang H, Zhang Y, Li J, Zhang F, Hu W (2013) A modified hierarchical porous carbon for lithium/sulfur batteries with improved capacity and cycling stability. J Solid State Electr 17: 2243CrossRefGoogle Scholar
  25. 25.
    Deng ZF, Zhang ZA, Lu H, Lai YQ, Liu J, Li J, Liu Y X( 2014) Vapor-grown carbon fibers enhanced sulfur-multi walled carbon nanotubes composite cathode for lithium/sulfur batteries. Trans Nonferrous Metals Soc China 24:158Google Scholar
  26. 26.
    Yin Z, Song B, Cheng Z, Cheng H (2010) Molecular Beacon-Based DNA Computing Model for Maximum Independent Set Problem. IEEE Comput Soc 2:732Google Scholar
  27. 27.
    Chung SH, Manthiram A (2013) Lithium–sulfur batteries with superior cycle stability by employing porous current collectors. Electrochim Acta 107:569CrossRefGoogle Scholar
  28. 28.
    Zhao Z, Qin D, Wang S, Chen G, Li Z (2014) Fabrication of High Conductive S/C Cathode by Sulfur Infiltration into Hierarchical Porous Carbon/Carbon Fiber Weave-Structured Materials via Vapor-Melting Method. Electrochim Acta 127:123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jing Zhang
    • 1
    • 2
  • Heqin Li
    • 1
  • Zhiwei Lin
    • 1
  • Qiong Tang
    • 1
    • 2
  • Zituo Liang
    • 1
  • Pei Tang
    • 1
  • Yangwu Tong
    • 1
  • Yuanyuan Pan
    • 1
  1. 1.School of Material Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.School of Electronic Science and Applied PhysicsHefei University of TechnologyHefeiChina

Personalised recommendations