, Volume 24, Issue 4, pp 1139–1151 | Cite as

First principles hybrid functional study of small polarons in doped SrCeO3 perovskite: towards computation design of materials with tailored polaron

  • Qiang Bai
  • Yizhou Zhu
  • Xingfeng He
  • Eric Wachsman
  • Yifei Mo
Original Paper


SrCeO3 perovskites are promising materials for hydrogen separation membranes. High hydrogen flux in SrCeO3 is achieved by various elemental doping to increase protonic and electronic conductivity. While the effect of B-site dopants on protonic conductivity is established, the polaronic mechanism induced by B-site cations, which is essential for electronic transport, has been less understood. Using first principles hybrid functional calculations, we investigated the polaron formation and migration in SrCeO3 perovskites doped with different elements. Our computation results revealed distinctive behaviors of different dopant elements in localizing polarons and explained previous literature results of doping SrCeO3 for increasing electronic conductivity and hydrogen flux. In addition, new promising dopants are predicted to increase electronic conductivity. The computation approach demonstrated in this study provides a general scheme to design materials with tailored polaron formation and enhanced functional properties.


First principles calculation Hybrid functional calculation Computational materials design Polaron Mixed ionic and electronic conductor Hydrogen separation membrane 



This work was supported by the Office of Naval Research (ONR) under award No. N00014-14-1-0721. We acknowledge computational facilities from the University of Maryland supercomputing resources, the Maryland Advanced Research Computing Center (MARCC), and the Extreme Science and Engineering Discovery Environment (XSEDE) supported by National Foundation Award No. DMR 150038.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11581_2017_2268_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1988 kb).


  1. 1.
    Schultz MG, Diehl T, Brasseur GP, Zittel W (2003) Air pollution and climate-forcing impacts of a global hydrogen economy. Science 302(5645):624–627CrossRefGoogle Scholar
  2. 2.
    Taniguchi N, Hatoh K, Niikura J, Gamo T, Iwahara H (1992) Proton conductive properties of gadolinium-doped barium cerates at high temperatures. Solid State Ionics 53:998–1003CrossRefGoogle Scholar
  3. 3.
    Schober T, Krug F, Schilling W (1997) Criteria for the application of high temperature proton conductors in SOFCs. Solid State Ionics 97(1):369–373CrossRefGoogle Scholar
  4. 4.
    Yajima T, Koide K, Takai H, Fukatsu N, Iwahara H (1995) Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries. Solid State Ionics 79:333–337CrossRefGoogle Scholar
  5. 5.
    Hamakawa S, Hibino T, Iwahara H (1994) Electrochemical hydrogen permeation in a proton-hole mixed conductor and its application to a membrane reactor. J Electrochem Soc 141(7):1720–1725CrossRefGoogle Scholar
  6. 6.
    Marnellos G, Sanopoulou O, Rizou A, Stoukides M (1997) The use of proton conducting solid electrolytes for improved performance of hydro- and dehydrogenation reactors. Solid State Ionics 97(1):375–383CrossRefGoogle Scholar
  7. 7.
    Norby T (1999) Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 125(1):1–11CrossRefGoogle Scholar
  8. 8.
    Phair JW, Badwal SPS (2006) Review of proton conductors for hydrogen separation. Ionics 12(2):103–115CrossRefGoogle Scholar
  9. 9.
    Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33(1):333–359CrossRefGoogle Scholar
  10. 10.
    Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39(11):4355–4369CrossRefGoogle Scholar
  11. 11.
    Song SJ, Lee TH, Wachsman ED, Chen L, Dorris SE, Balachandran U (2005) Defect structure and transport properties of Ni–SrCeO3−δ cermet for hydrogen separation membrane. J Electrochem Soc 152(11):J125–J129CrossRefGoogle Scholar
  12. 12.
    Oh T, Yoon H, Wachsman ED (2009) Effect of Eu dopant concentration in SrCe1−xEuxO3−δ on ambipolar conductivity. Solid State Ionics 180(23):1233–1239CrossRefGoogle Scholar
  13. 13.
    Li J, Yoon H, Wachsman ED (2011) Hydrogen permeation through thin supported SrCe0.7Zr0.2Eu0.1O3−δ membranes; dependence of flux on defect equilibria and operating conditions. J Membr Sci 381(1):126–131Google Scholar
  14. 14.
    Song SJ, Park H-S (2007) Mixed pronton–electron conducting properties of Yb doped strontium cerate. J Mater Sci 42(15):6177–6182CrossRefGoogle Scholar
  15. 15.
    Shin S, Huang HH, Ishigame M, Iwahara H (1990) Protonic conduction in the single crystals of SrZrO3 and SrCeO3 doped with Y2O3. Solid State Ionics 40:910–913CrossRefGoogle Scholar
  16. 16.
    Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3:359–363CrossRefGoogle Scholar
  17. 17.
    Wagner C (1975) Equations for transport in solid oxides and sulfides of transition metals. Prog Solid State Chem 10:3–16CrossRefGoogle Scholar
  18. 18.
    Song SJ, Wachsman ED, Rhodes J, Dorris SE, Balachandran U (2004) Hydrogen permeability of SrCe1−xMxO3−δ (x= 0.05, M= Eu, Sm). Solid State Ionics 167(1):99–105CrossRefGoogle Scholar
  19. 19.
    Qi X, Lin YS (2000) Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes. Solid State Ionics 130(1):149–156CrossRefGoogle Scholar
  20. 20.
    Kosacki I, Tuller HL (1995) Mixed conductivity in SrCe0.95Yb0.05O3 protonic conductors. Solid State Ionics 80(3):223–229CrossRefGoogle Scholar
  21. 21.
    Song SJ, Wachsman ED, Rhodes J, Dorris SE, Balachandran U (2003) Numerical modeling of hydrogen permeation in chemical potential gradients. Solid State Ionics 164(1):107–116CrossRefGoogle Scholar
  22. 22.
    Song SJ, Wachsman ED, Dorris SE, Balachandran U (2003) Defect structure and n-type electrical properties of SrCe0.95Eu0.05O3−δ. J Electrochem Soc 150(11):A1484–A1490CrossRefGoogle Scholar
  23. 23.
    Swift M, Van de Walle CG (2016) Impact of point defects on proton conduction in strontium cerate. J Phys Chem C 120(18):9562–9568CrossRefGoogle Scholar
  24. 24.
    Maxisch T, Zhou F, Ceder G (2006) Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys Rev B 73(10):104301CrossRefGoogle Scholar
  25. 25.
    Ong SP, Chevrier VL, Ceder G (2011) Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B 83(7):075112CrossRefGoogle Scholar
  26. 26.
    Holdren JP (2011) Materials genome initiative for global competitiveness. National Science and Technology Council OSTP Washington, USAGoogle Scholar
  27. 27.
    Morgan D, Ceder G, Curtarolo S (2004) High-throughput and data mining with ab initio methods. Meas Sci Technol 16(1):296CrossRefGoogle Scholar
  28. 28.
    Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12(3):191–201CrossRefGoogle Scholar
  29. 29.
    Ong SP, Mo Y, Richards WD, Miara L, Lee HS, Ceder G (2013) Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M= Ge, Si, Sn, Al or P, and X= O, S or Se) family of superionic conductors. Energy Environ Sci 6(1):148–156CrossRefGoogle Scholar
  30. 30.
    He X, Mo Y (2015) Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations. Phys Chem Chem Phys 17(27):18035–18044CrossRefGoogle Scholar
  31. 31.
    Wang Z, Chu I-H, Zhou F, Ong SP (2016) Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors. Chem Mater 28(11):4024–4031CrossRefGoogle Scholar
  32. 32.
    Pupp C, Gingerich KA (1971) Mass spectrometric determination of the heats of atomization of NdO2, NdBO, and NdBO2 and upper values for the dissociation energies of NdAg and Nd2. J Chem Phys 54(8):3380–3384CrossRefGoogle Scholar
  33. 33.
    Sekizawa K, Kitagawa M, Takano Y (1998) Magnetic properties of Pr ions in perovskite-type oxides. J Magn Magn Mater 177:541–542CrossRefGoogle Scholar
  34. 34.
    Makita K, Yamashita O (1999) Phase boundary structure in Nd–Fe–B sintered magnets. Appl Phys Lett 74(14):2056–2058CrossRefGoogle Scholar
  35. 35.
    Primdahl S, Hansen JR, Grahl-Madsen L, Larsen PH (2001) Sr-doped LaCrO3 anode for solid oxide fuel cells. J Electrochem Soc 148(1):A74–A81CrossRefGoogle Scholar
  36. 36.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953CrossRefGoogle Scholar
  37. 37.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRefGoogle Scholar
  38. 38.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  39. 39.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118(18):8207–8215CrossRefGoogle Scholar
  40. 40.
    Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum:“Hybrid functionals based on a screened coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J Chem Physics 124(21):219906CrossRefGoogle Scholar
  41. 41.
    Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52(8):R5467CrossRefGoogle Scholar
  42. 42.
    Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82(7):075122CrossRefGoogle Scholar
  43. 43.
    Seo D-H, Lee J, Urban A, Malik R, Kang S, Ceder G (2016) The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem 8(7):692–697CrossRefGoogle Scholar
  44. 44.
    Kitchaev DA, Peng H, Liu Y, Sun J, Perdew JP, Ceder G (2016) Energetics of MnO2 polymorphs in density functional theory. Phys Rev B 93(4):045132CrossRefGoogle Scholar
  45. 45.
    Ong SP, Mo Y, Ceder G (2012) Low hole polaron migration barrier in lithium peroxide. Phys Rev B 85(8):081105CrossRefGoogle Scholar
  46. 46.
    Ong SP, Chevrier VL, Ceder G (2011) Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B 83(7):075112CrossRefGoogle Scholar
  47. 47.
    Swift M, Janotti A, Van de Walle CG (2015) Small polarons and point defects in barium cerate. Phys Rev B 92(21):214114CrossRefGoogle Scholar
  48. 48.
    Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Ángyán JG (2006) Screened hybrid density functionals applied to solids. J Chem Phys 124(15):154709CrossRefGoogle Scholar
  49. 49.
    Jain A, Hautier G, Moore CJ, Ong SP, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci 50(8):2295–2310CrossRefGoogle Scholar
  50. 50.
    Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319CrossRefGoogle Scholar
  51. 51.
    Ramo DM, Shluger AL, Gavartin JL, Bersuker G (2007) Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. Phys Rev Lett 99(15):155504CrossRefGoogle Scholar
  52. 52.
    Morgan BJ, Scanlon DO, Watson GW (2009) Small polarons in Nb- and Ta-doped rutile and anatase TiO2. J Mater Chem 19(29):5175–5178CrossRefGoogle Scholar
  53. 53.
    Biswas K, Du M-H (2012) Energy transport and scintillation of cerium-doped elpasolite Cs2LiYCl6: hybrid density functional calculations. Phys Rev B 86(1):014102CrossRefGoogle Scholar
  54. 54.
    Janotti A, Varley JB, Choi M, Van de Walle CG (2014) Vacancies and small polarons in SrTiO3. Phys Rev B 90(8):085202CrossRefGoogle Scholar
  55. 55.
    Hermet J, Bottin F, Dezanneau G, Geneste G (2012) Thermodynamics of hydration and oxidation in the proton conductor Gd-doped barium cerate from density functional theory calculations. Phys Rev B 85(20):205137CrossRefGoogle Scholar
  56. 56.
    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86(1):253CrossRefGoogle Scholar
  57. 57.
    Komsa H-P, Rantala TT, Pasquarello A (2012) Finite-size supercell correction schemes for charged defect calculations. Phys Rev B 86(4):045112CrossRefGoogle Scholar
  58. 58.
    Mather GC, García-Martín S, Benne D, Ritter C, Amador U (2011) A-site-cation deficiency in the SrCe0.9Yb0.1O3−δ perovskite: effects of charge-compensation mechanism on structure and proton conductivity. J Mater Chem 21(15):5764–5773CrossRefGoogle Scholar
  59. 59.
    Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) First-principles study of native point defects in ZnO. Phys Rev B 61(22):15019CrossRefGoogle Scholar
  60. 60.
    Janotti A, Van de Walle CG (2007) Native point defects in ZnO. Phys Rev B 76(16):165202CrossRefGoogle Scholar
  61. 61.
    Radin MD, Siegel DJ (2013) Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries. Energy Environ Sci 6(8):2370–2379CrossRefGoogle Scholar
  62. 62.
    Ranløv J, Nielsen K (1994) Crystal structure of the high-temperature protonic conductor SrCeO3. J Mater Chem 4(6):867–868CrossRefGoogle Scholar
  63. 63.
    Goubin F, Rocquefelte X, Whangbo MH, Montardi Y, Brec R, Jobic S (2004) Experimental and theoretical characterization of the optical properties of CeO2, SrCeO3, and Sr2CeO4 containing Ce4+ (f0) ions. Chem Mater 16(4):662–669CrossRefGoogle Scholar
  64. 64.
    Sata N, Yugami H, Akiyama Y, Hattori T, Yamaguchi S, Ishigame M (1999) Studies on the superlattice of perovskite-type proton conductors synthesized by pulsed laser ablation. Solid State Ionics 121(1):321–327CrossRefGoogle Scholar
  65. 65.
    Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G (2013) Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Materials 1(1):011002CrossRefGoogle Scholar
  66. 66.
    Ong SP, Wang L, Kang B, Ceder G (2008) Li−Fe−P−O2 phase diagram from first principles calculations. Chem Mater 20(5):1798–1807CrossRefGoogle Scholar
  67. 67.
    Uchida H, Maeda N, Iwahara H (1983) Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures. Solid State Ionics 11(2):117–124CrossRefGoogle Scholar
  68. 68.
    Possenriede E, Hellermann B, Schirmer OF (1988) O-trapped holes in acceptor doped KNbO3. Solid State Commun 65(1):31–33CrossRefGoogle Scholar
  69. 69.
    Shluger AL, Stoneham AM (1993) Small polarons in real crystals: concepts and problems. J Phys Condens Matter 5(19):3049CrossRefGoogle Scholar
  70. 70.
    Kotomin EA, Eglitis RI, Postnikov AV, Borstel G, Christensen NE (1999) First-principles and semiempirical calculations for bound-hole polarons in KNbO3. Phys Rev B 60(1):1CrossRefGoogle Scholar
  71. 71.
    Liang X (2015) Modification of mixed proton-electron conductors for hydrogen transport membranes and investigation of ammonia ion transfer membranes. M.S. Dissertation, University of Maryland, College ParkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Qiang Bai
    • 1
  • Yizhou Zhu
    • 1
  • Xingfeng He
    • 1
  • Eric Wachsman
    • 1
    • 2
  • Yifei Mo
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.University of Maryland Energy Research CenterUniversity of MarylandCollege ParkUSA

Personalised recommendations