, Volume 24, Issue 4, pp 977–987 | Cite as

Substitution effects on the bulk and surface properties of (Li,Ni)Mn2O4

  • D. Alburquenque
  • J. C. Denardin
  • L. Troncoso
  • J. F. Marco
  • J. L. Gautier
Original Paper


Manganese oxides of spinel structure, LiMn2O4, Li1-x Ni x Mn2O4 (0.25 ≤ x≤ 0.75), and NiMn2O4, were studied by EDS, XRD, SEM, magnetic (M-H, M-T), and XPS measurements. The samples were synthesized by an ultrasound-assisted sol-gel method. EDS analysis showed good agreement with the formulations of the oxides. XRD and Rietveld refinement of X-ray data indicate that all samples crystallize in the Fd3m space group characteristic of the cubic spinel structure. The a-cell parameter ranges from a = 8.2276 Å (x = 0) to a = 8.3980 Å (x = 1). SEM results showed particle agglomerates ranging in size from 2.3 μm (x = 0) down to 0.8 μm (x = 1). Hysteresis magnetization vs. applied field curves in the 5–300K range was recorded. ZFC-FC measurements indicate the presence of two magnetic paramagnetic-ferrimagnetic transitions. The experimental Curie constant was found to vary from 5 to 7.1 cm3 K mol−1 for the range of compositions studied (0 ≤ x ≤ 1). XPS studies of these oxides revealed the presence of Ni2+, Mn3+, and Mn4+. The experimental Ni/Mn atomic ratios obtained by XPS were in good agreement with the nominal values. A linear relationship of the average oxidation state of Mn with Ni content was observed. The oxide’s cation distributions as a function of Ni content from x = 0  Li+[Mn3+Mn4+]O4 to x = 1 \( {\mathrm{Ni}}_{0.35}^{2+}{\mathrm{Mn}}_{0.65}^{3+}\left[{\mathrm{Ni}}_{0.65}^{2+}\right.\left.{\mathrm{Mn}}_{1.35}^{3+}\right]{\mathrm{O}}_4 \) were proposed.


XRD Spinels Mixed oxides XPS Magnetic properties 



This work was financially supported by CONICYT Chile (Fondecyt grant 1150371). J.F.M. thanks the support from the Spanish MINECO project MAT2015-64110-C2-1-P.


  1. 1.
    Franco AA (ed) (2015) Rechargeable lithium batteries. Elsevier Ltd., OxfordGoogle Scholar
  2. 2.
    Ozawa K (ed) (2009) Lithium ion rechargeable batteries: materials, technology and new applications. Willey-UCH, WeinheimGoogle Scholar
  3. 3.
    Dou S (2015) Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries. Ionics 21:3001–3030CrossRefGoogle Scholar
  4. 4.
    Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1052CrossRefGoogle Scholar
  5. 5.
    Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567CrossRefGoogle Scholar
  6. 6.
    Thirunakaran R, Ravikumar R, Gopukumar S, Sivahanmugam A (2013) Electrochemical evaluation of dual-doped LiMn2O4 spinels synthesized via co-precipitation method as cathode material for rechargeable batteries. J Alloys Compd 556:266–273CrossRefGoogle Scholar
  7. 7.
    Tarascon JM, McKinnon WR, Coowar F, Bowner TN, Amatucci G, Guyomard D (1994) Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J Electrochem Soc 141:1421–1431CrossRefGoogle Scholar
  8. 8.
    Dudney NJ, Bates JB, Zuhr RA, Young S, Robertson JD, Jun HP, Hackney SA (1999) Nanocrystalline LixMn2 − xO 4 cathodes for solid-state thin-film rechargeable lithium batteries. J Electrochem Soc 146:2455–2464CrossRefGoogle Scholar
  9. 9.
    Potapenko AV, Kirillov SA (2014) Lithium manganese spinel materials for high-rate electrochemical applications. J Energy Chem 23:543–558CrossRefGoogle Scholar
  10. 10.
    Dai ZF, Liu GY, Wang BS, Guo DW, Huang ZL, Guo JM (2008) Solution combustion synthesis of LiMn2O4 powder by using glucose as fuel in acetate system. J Funct Mater 39:254–256Google Scholar
  11. 11.
    Passerini S, Coustier F, Giogetti M, Smyrl WH (1999) Li-Mn-O aerogels. Electrochem Solid State Lett 2:483–485CrossRefGoogle Scholar
  12. 12.
    Naghash AR, Lee JY (2000) Preparation of spinel lithium manganese oxide by aqueous co-precipitation. J Power Sources 85:284–293CrossRefGoogle Scholar
  13. 13.
    Xia Y, Takeshige H, Noguchi H, Yoshio M (1995) Studies on a Li-Mn-O spinel system (obtained by melt-impregnation) as a cathode for 4V lithium batteries. Part 1. Synthesis and electrochemical behavior of LixMn2O4. J Power Sources 56:61–67CrossRefGoogle Scholar
  14. 14.
    Hon YM, Fung KZ, Hon MH (2001) Synthesis and characterization of Li1+δMn2-δO4 powders prepared by citric acid gel process. J Eur Ceram Soc 21:515–522CrossRefGoogle Scholar
  15. 15.
    Tsamura T, Shimizu A, Inagaki M (1997) Synthesis of LiMn2O4 spinel via tartrates. J Power Sources 3:539–599Google Scholar
  16. 16.
    Liu W, Farrington GC, Chaput F, Dunn B (1996) Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by Pechini process. J Electrochem Soc 143:879–884CrossRefGoogle Scholar
  17. 17.
    Du K, Zhang H (2003) Preparation and performance of spinel LiMn2O4 by a citrate route with combustion. J Alloys Compd 352:250–254CrossRefGoogle Scholar
  18. 18.
    Gao X, Sha Y, Lin Q, Cai R, Tade MO, Shao Z (2015) Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries. J Power Sources 275:38–44CrossRefGoogle Scholar
  19. 19.
    Wang F, Suo L, Liang Y, Yang C, Han F, Gao T, Sun W, Wang C (2017) Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries. Adv Energy Mater 7:1600922CrossRefGoogle Scholar
  20. 20.
    Wang H (2015) LiNi0.5Mn1.5O4 cathodes for lithium ion batteries: a review. J Nanosci Nanotechnol 15:6883–6890CrossRefGoogle Scholar
  21. 21.
    Gyorgyfalva GCD, Reaney IM (2001) Decomposition of NiMn2O4 spinel: an NTC thermistor material. J Eur Ceram Soc 21(2001):2115–2148Google Scholar
  22. 22.
    Feteira A (2009) Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J Am Ceram Soc 92:967–983CrossRefGoogle Scholar
  23. 23.
    Veres A, Noudem JG, Perez O, Fourrez S, Bailleul G (2007) Manganese based spinel-like ceramics with NTC-type thermistor behavior. Solid State Ionics 178:423–428CrossRefGoogle Scholar
  24. 24.
    Ponce J, Rehspringer JL, Poillerat G, Gautier JL (2001) Electrochemical study of nickel-aluminium-manganese spinel NixAl1-xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 46:3373–3380CrossRefGoogle Scholar
  25. 25.
    Boucher B, Buhl RB, Perrin M (1969) Neutron diffraction crystallography of cubic manganese spinel, NiMn2O4. Acta Cryst Sect B Struct Crystal-logr Cryst Chem B 25:2326–2333CrossRefGoogle Scholar
  26. 26.
    Brabers VAM, Vansetten FM, Knapen PSA (1983) X-ray photoelectron spectroscopy study of the cation valencies in nickel manganite. J Solid State Chem 49:93–98CrossRefGoogle Scholar
  27. 27.
    Almeida JMA, Meneses CT, Menezes AS, Jardim RF, Sasaki JM (2008) Synthesis and characterization of NiMn2O4 nanoparticles using gelatin as organic precursor. J Magn Magn Mater 320:e304–e307CrossRefGoogle Scholar
  28. 28.
    Fang D, Wang Z, Yang P, Liu W, Chen C, Winnubst AJA (2006) Preparation of ultra-fined nickel manganite powders and ceramics by a solid-state coordination reaction. J Am Ceram Soc 89:230–235CrossRefGoogle Scholar
  29. 29.
    Ashcroft G, Terry J, Grover R (2006) Study of the preparation conditions for NiMn2O4 grown from hydroxide precursors. J Eur Ceram Soc 26:901–908CrossRefGoogle Scholar
  30. 30.
    Diez A, Schmidt R, Saqua AE, Frechero MA, Matesanz E, León C, Morán E (2010) Structure and physical properties of nickel manganite NiMn2O4 obtained from nickel permanganate precursor. J Eur Ceram Soc 30:2617–2624CrossRefGoogle Scholar
  31. 31.
    Durán P, Tartaj J, Rubio F, Peña O, Moure C (2005) Preparation and synthesis behavior of spinel-type CoxNiMn2-xO4 (0.2 ≤ x ≤ 1.2) by the ethylene glycol-metal nitrate polymerized complex process. J Eur Ceram Soc 15:3021–3025CrossRefGoogle Scholar
  32. 32.
    Aguilar-Garib JA, Sanchez-de-Jesús F, Bolarín-Miró AM, Ham-Hernández S (2011) Synthesis of NiMn2O4 assisted by high-energy ball milling of NiO-MnO powders. J Ceram Process Res 12:721–726Google Scholar
  33. 33.
    Bang JH, Suslik KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 247:1039–1059CrossRefGoogle Scholar
  34. 34.
    Diez-García MI, Manzi-Orezzoli V, Jankulovska M, Anandan S, Bonete P, Gómez R, Lana-Villareal T (2015) Effects of ultrasound irradiation on the synthesis of metal oxide nanostructures. Phys Procedia 63:85–90CrossRefGoogle Scholar
  35. 35.
    Tang XX, Manthiram A, Gooddenough JB (1989) NiMn2O4 revisited. J Less Com Metals 156:357–368CrossRefGoogle Scholar
  36. 36.
    Xi TF, Zhu YR, Hu XG (2009) Structure and electrochemical properties of LiLaxMn2-xO4 cathode material by the ultrasonic-assisted sol-gel method. Inter J Miner Metall Mater 16:119–123CrossRefGoogle Scholar
  37. 37.
    Rietveld HMA (1969) Profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  38. 38.
    Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–59CrossRefGoogle Scholar
  39. 39.
    Alburquenque D, Vargas E, Denardin JC, Escrig J, Marco JF, Gautier JL (2014) Physical and electrochemical study of cobalt oxide nano- and microparticles. Mater Charact 93:191–197CrossRefGoogle Scholar
  40. 40.
    Henish HK (ed) (1951) Semiconducting materials. Butterworths Sc Pub Ltd, London, Verwey EJW, Oxidic semiconductors pp 151–161Google Scholar
  41. 41.
    Briggs D, Seah MP (eds) (1990) Practical surface analysis, vol 1, Sherwood PMA Auger and X-ray photoelectron spectroscopy. Willey, ChichesterGoogle Scholar
  42. 42.
    Faber J, Fawcett T (2002) The power diffraction file: present and future. Acta Cryst B58:325–332CrossRefGoogle Scholar
  43. 43.
    Kai Z, Yang W, Shuang Z, Yan Y, Hao P, Guiwei L, Jianli J (2014) Synthesis of single crystalline spinel LiMn2O4 nanorods for lithium ion battery. Int J Electrochem Sci 9:5280–5288Google Scholar
  44. 44.
    Xu W, Li Q, Guo J, Bai H, Su CW, Ruan R, Peng J (2016) Electrochemical evaluation of LiZnxMn2-xO4 (x ≤ 0.10) cathode material synthesized by solution combustion method. Ceram Int 42:5693–5698CrossRefGoogle Scholar
  45. 45.
    Yi TF, Li CY, Shu J, Zhu RS (2009) Comparison of structure and electrochemical properties for 5V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials. J Solid State Electrochem 13:119–123CrossRefGoogle Scholar
  46. 46.
    Alburquenque D, Troncoso L, Denardin JC, Butera A, Padmasree KD, Ortiz J, Herrera F, Marco JF, Gautier JL (2016) Structural and physicochemical properties of nickel manganite NIMn2O4-δ synthesized by sol-gel and ultra sound assisted methods. J Alloys Compd 672:307–316CrossRefGoogle Scholar
  47. 47.
    Tadić T, Savić SM, Jaglicić Z, Vojisavijević K, Radojiković A, Prsić S, Nikolić D (2014) Magnetic properties of NiMn2O4−δ (nickel manganite): multiple magnetic phase transitions and exchange bias effect. J Alloys Compd 588:465–469CrossRefGoogle Scholar
  48. 48.
    Samarasingha PB, Andersen NH, Sørby MH, Kumar S, Nilsen O, Fjellvåg HR (2016) Neutron diffraction and Raman analysis of LiMn1.5Ni0.5O4 spinel type oxides for use as lithium ion battery cathode and their capacity enhancements. Solid State Ionics 284:28–36CrossRefGoogle Scholar
  49. 49.
    Gao JM, Zhang M, Guo M (2015) Effect of Ni substitution content on structure and magnetic properties of spinel ferrites synthesized from laterite leaching solutions. Ceram Int 41:5283–15286Google Scholar
  50. 50.
    Yadav RS, Havlica J, Hnatko M, Šajgalík P, Alexander C, Palou M, Bartoníčková E, Boháč M, Frajkorová F, Masilko J, Zmrzlý M, Kalina L, Hajdúchová M, Enev V (2015) Magnetic properties of Co1-xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel auto combustion method and its ball milling. J Magn Magn Mat 378:190–199CrossRefGoogle Scholar
  51. 51.
    Su YZ, Xu QZ, Chen GF, Cheng H, Li N, Liu ZQ (2015) One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties. Electrochim Acta 174:1216–1224CrossRefGoogle Scholar
  52. 52.
    Ferreira RA, Tedesco JCG, Birk JO, Kacef W, Yokaichiya F, Rasmussen N, Peña O, Henry PF, Simeone GG, Bordallo HN, Lisboa-Filho PN (2014) Ferrimagnetism and spin excitation in a Ni-Mn partially inverted spinel prepared using a modified polymeric precursor method. Mater Chem Phys 146:58–64CrossRefGoogle Scholar
  53. 53.
    Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–47014CrossRefGoogle Scholar
  54. 54.
    Mohai M (2004) XPS MultiQuant: multimodel XPS quantification software. Surf Interface Anal 36:828–832CrossRefGoogle Scholar
  55. 55.
    Wagner CD (1983) Sensitivity factors for XPS. Analysis of surface atoms. J Electron Spectrosc Relat Phenom 32:99–102CrossRefGoogle Scholar
  56. 56.
    Marco JF, Gancedo JR, Ortiz J, Gautier JL (2004) Characterization of spinel-related oxides NixCo3-xO4 (x = 0.3, 1.3, 1.8) prepared by spray pyrolysis at 350 °C. Appl Surf Sci 227:175–186CrossRefGoogle Scholar
  57. 57.
    Beyreuther E, Grafström S, Eng LM, Thiele C, Dörr K (2006) XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys Rev B 73:155425–155429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • D. Alburquenque
    • 1
  • J. C. Denardin
    • 2
  • L. Troncoso
    • 3
  • J. F. Marco
    • 4
  • J. L. Gautier
    • 1
  1. 1.Departamento de Química de los MaterialesUSACHSantiagoChile
  2. 2.Departamento de FísicaUSACHSantiagoChile
  3. 3.Instituto de Materiales y Procesos TermomecánicosUACHValdiviaChile
  4. 4.Instituto de Química Física “Rocasolano”CSICMadridSpain

Personalised recommendations