Ionics

, Volume 24, Issue 4, pp 1243–1252 | Cite as

Effect of different combinations of precursors of zirconium and selenium in the electrodeposited ZrSe2 thin films

Original Paper
  • 99 Downloads

Abstract

The article describes the effect of different combination of zirconium and selenium sources on electrodeposited ZrSe2 thin films. Three different zirconium sources; ZrO(NO3)2.H2O, Zr(SO4)2 and ZrOCl2.8H2O and two different selenium sources; SeO2 and Na2SeO3 were used. The effect of combination of zirconium and selenium sources of the films prepared by optimising the electrolyte potentials through cyclic voltammetry and their structural, compositional, surface morphology and optical properties are studied. It is noticed that the film growth rate and band gap energy is found to be sensitive to Zr sources used. All films are found to be hexagonal polycrystalline, regardless of the Zr and Se sources used.

Keywords

Thin films ZrSe2 Electrodeposition Cyclic voltammetry 

Notes

Acknowledgements

The author gratefully acknowledges the UGC-SAP-DRS for providing financial aid for Electrochemical workstation (CHI 604E USA) to the Department of Physics, Manonmaniam Sundaranar University and also the Department of Nanoscience and Technology, Bharathiar University, for extending their FESEM facility established under the DST-PURSEProgramme.

References

  1. 1.
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699Google Scholar
  2. 2.
    Wilson A, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193CrossRefGoogle Scholar
  3. 3.
    Greenaway DL, Nitsche R (1965) Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J Phys Chem Solids 26:1445CrossRefGoogle Scholar
  4. 4.
    Lee PA, Said G, Davis R, Lim TH (1969b) On optical properties of some layer compounds. J Phys Chem Solids 30:2519Google Scholar
  5. 5.
    Bayliss SC, Liang WY (1982) Symmetry dependence of optical transitions in group 4B transition metal dichalcogenides. J Phys C Solid State Phys 15:1283CrossRefGoogle Scholar
  6. 6.
    Beal AR, Knights JC, Liang WY (1972) Transmission spectra of some transition metal dichalcogenides. I. Group IVA: octahedral coordination. J Phys C Solid State Phys 5:3531CrossRefGoogle Scholar
  7. 7.
    Wertheim GK, DiSalvo FJ, Buchanan DNE (1973) Valence bands of layer structure transition metal chalcogenides. Solid State Commun 13:1225CrossRefGoogle Scholar
  8. 8.
    Saiki K, Yoshimi M, Tanaka S (1978) Modulation Spectroscopy on the GroupIV and VI Transition-Metal Dichalcogenides. Phys Sratus Solidi B 88:607CrossRefGoogle Scholar
  9. 9.
    Bartwal KS, Srivastava ON (1993) Negative resistance in ZrSe2 single crystals. Mater Sci Eng B 18:88CrossRefGoogle Scholar
  10. 10.
    Hankare PP, Asabe MR, Kokate AV, Delekar SD, Sathe DJ, Mulla IS, Chougule BK (2006) Effect of annealing on properties of ZrSe 2 thin films. J Cryst Growth 294:254CrossRefGoogle Scholar
  11. 11.
    Jandl S, Provencher R (1981) Raman spectra of ZrS2.5Se0.5. J Phys C 14:461CrossRefGoogle Scholar
  12. 12.
    Lee PA, Said G, Davis R (1969a) Negative resistance and switching effect in the single crystal layer compounds SnS2 and ZrS2. Solid State Commun 7:1359CrossRefGoogle Scholar
  13. 13.
    Han JK, Thanikaikarasa S, Thaiyan M, Kyung HP, Sanjeeviraja C, Yong DK (2007) Characterization of electrosynthesized iron diselenide thin films. J Mater Sci Mater Electron 19:1086Google Scholar
  14. 14.
    Shen C-M, Xiao-gang Z, Li H-L (2001) Effect of pH on the electrochemical deposition of cadmium selenide nanocrystal films. Mater Sci Eng B 84:265CrossRefGoogle Scholar
  15. 15.
    Lincot D (2005) Electrodeposition of semiconductors. Thin Solid Films 487:40CrossRefGoogle Scholar
  16. 16.
    Fulop GF, Taylor RM (1985) Electrodeposition of Semiconductors. Annual Rev Mater Sci, vol. 15, p 197Google Scholar
  17. 17.
    Gary H (2008) Electrochemistry of Nanomaterials, 1st edn. John Wiley & Sons, HobokenGoogle Scholar
  18. 18.
    Ruythooren W, Attenborough K, Beerten S, Merken P, Fransaer J, Beyne E, Van Hoof C, De Boeck J, Celis JP (2000) Electrodeposition for the synthesis of microsystems. J Micromech Microeng 10:101CrossRefGoogle Scholar
  19. 19.
    Dharmadasa IM, Haigh J (2006) Strengths and Advantages of Electrodeposition as a Semiconductor Growth Technique for Applications in Macroelectronic Devices. J Electrochem Soc 153:G47CrossRefGoogle Scholar
  20. 20.
    Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, Kötschau I, Schock HW, Schurr R, Hölzing A, Jost S, Hock R, Voß T, Schulze J, Kirbs A (2009) Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films 517:2511CrossRefGoogle Scholar
  21. 21.
    Scragg JJ, Dale PJ, Peter LM (2008) Towards sustainable materials for solar energy conversion: Preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochem Commun 10:639CrossRefGoogle Scholar
  22. 22.
    Calixto ME, Sebastian PJ, Bhattacharya RN, Nou R (1999) Compositional and optoelectronic properties of CIS and CIGS thin films formed by electrodeposition. Sol Energy Mater Sol Cells 59:75CrossRefGoogle Scholar
  23. 23.
    Atapattu HYR, De Silva DSM, Pathiratne KAS, Dharmadasa IM (2016) Effect of stirring rate of electrolyte on properties of electrodeposited CdS layers. J Mater Sci Mater Electron 27:5415CrossRefGoogle Scholar
  24. 24.
    von Windheim J, Cocivera M (1987)Photoelectrochemical Deposition of Cadmium Telluride Using Tri‐N‐Butylphosphine Telluride. Electrochem Soc Solid-State Sci Technol 134:440Google Scholar
  25. 25.
    Dong YZ, Zheng YF, Duan H, Sun YF, Chen YH (2005) Formation of pyrite (FeS2) thin nano-films by thermal-sulfurating electrodeposition films at different temperature. Mater Lett 59:2398CrossRefGoogle Scholar
  26. 26.
    Kim D, Park K, Jung H, Yoo B (2016) Electrodeposition of Chalcogenide ZnSe Thin Films with Tailored Compositions in Alkaline Aqueous Citrate Solutions. J Electrochem Soc 163:D300CrossRefGoogle Scholar
  27. 27.
    Sargar AM, Patil NS, Mane SR, Gawale SN, Bhosale PN (2009) Electrochemical Synthesis and Characterisation of ZrSe2 Thin Films. Int J Electrochem Sci 4:887Google Scholar
  28. 28.
    Hankarea PP, Asabe MR, Kokate AV, Delekar SD, Sathe DJ, Mulla IS, Chougule BK (2006) Effect of annealing on properties of ZrSe2 thin films. J Crys Growth 294:254CrossRefGoogle Scholar
  29. 29.
    Asabe MR, Ubale VP, Rajmane SV, Hanikshete AH (2013) Novel route for preparation of zirconium di-selenide thin films. DAV Inter J Sci 2:29Google Scholar
  30. 30.
    Riveros G, Gomez H, Henriquez R, Schrebler R, Marotti RE, Dalchiele EA (2001) Electrodeposition and characterization of ZnSe semiconductor thin films. Sol Energy Mater Sol C 70:255CrossRefGoogle Scholar
  31. 31.
    Mallet J, Kante I, Fricoteaux P, Molinari M, Troyon M (2012) Temperature and pH influences on the structural and the emission properties of electrodeposited CdSe nanowires. J Solid State Electrochem 16:1041CrossRefGoogle Scholar
  32. 32.
    Heini S, Tapio K, Mikko R, Markku L, Reijo L (1998) Electrodeposition of lead selenide thin films. J Mater Chem 8:651CrossRefGoogle Scholar
  33. 33.
    Patil RS (1999) Electrosynthesis of the molybdenum disulphide thin films and characterization. Thin Solid Films 340:11CrossRefGoogle Scholar
  34. 34.
    Thanikaikarasan S, Mahalingam T, Sundaram K, Kathalingam A, Kim YD, Kim T (2009) Growth and characterization of electrosynthesized iron selenide thin films. Vacuum 83:1066CrossRefGoogle Scholar
  35. 35.
    Pawar SM, Moholkar AV, Rajpure KY, Bhosale CH (2006) Electrosynthesis and characterization of CdSe thin films: Optimization of preparative parameters by photoelectrochemical technique. J Phys Chem Solids 67:2386CrossRefGoogle Scholar
  36. 36.
    Whitehouse CR, Balchin AA (1978) Non-stoichiometry in ZrS2 and ZrSe2. Phys Status Solidi 47:173CrossRefGoogle Scholar
  37. 37.
    Onuki Y, Inada R, Tanuma S, Yamanaka S, Kanumura H (1981) Electrochemical Characteristics of TiS2, ZrSe2 and VSe2 in Secondary Lithium Battery. Jap J Appl Phys 20:1583CrossRefGoogle Scholar
  38. 38.
    Velumani S, Narayandass SK, Mangalaraj D (1998) Structural characterization of hot wall deposited cadmium selenide thin films. Semicond Sci Technol 13:1016CrossRefGoogle Scholar
  39. 39.
    Williamson GK, Smallman RE (1956) III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye- scherrer spectrum. Philos Mag 1:34CrossRefGoogle Scholar
  40. 40.
    Thanikaikarasan S, Mahalingam T, Raja M, Kim T, Kim YD (2009) Characterization of electroplated FeSe thin films. J Mater Sci Mater Electron 20:727CrossRefGoogle Scholar
  41. 41.
    Liu L, Peng Q, Li Y (2008) Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor. Nano Res 1:403CrossRefGoogle Scholar
  42. 42.
    Mahalingam T, Dhanasekaran V, Sundaram K, Kathalingam A, Rhee J-K (2012) Characterization of electroplated ZnTe coatings. Ionic 18:299CrossRefGoogle Scholar
  43. 43.
    Pai C, Chung-Jui S, Hsieh Y-T, Chen P-Y, Sun I-W (2015) Voltammetric Study of Selenium and Two-Stage Electrodeposition of Photoelectrochemically Active Zinc Selenide Semiconductor Films in Ionic Liquid Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride. J Electrochem Soc 162:D243CrossRefGoogle Scholar
  44. 44.
    Mañas-Valero S, García-López V, Cantarero A, Galbiati M (2016) Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers. Appl Sci 6(9):264Google Scholar
  45. 45.
    Tsipas P, Tsoutsou D, Marquez-Velasco J,  Aretouli KE, Xenogiannopoulou E, Vassalou E, Kordas G, Dimoulas A (2015) Epitaxial ZrSe2/MoSe2 semiconductor v.d. Waals heterostructures on wide band gap AlN substrates. Microelectron Eng 147:269-272Google Scholar
  46. 46.
    Lucovsky G, Mooradian A, Taylor W, Wright GB, Keezer RC (1967) Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium. Solid State Commun 5(2):113–117Google Scholar
  47. 47.
    Gorman M, Solin S A (1976) Transmission Raman and depolarization spectra of bulk a-Se from 13 to 300 cm−1. Solid State Commun 18:1401Google Scholar
  48. 48.
    Loudon R, (1964) The Raman effect in crystals. Adv Phys 13(52):423–482Google Scholar
  49. 49.
    KunWei Li, XiaoTian Meng, Xue Liang, Hao Wang, Hui Yan, (2006) Electrodeposition and characterization of PbSe films on indium tin oxide glass substrates. J Solid State Electrochem 10(1):48–53Google Scholar
  50. 50.
    Lo’pez R, Go’mez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1Google Scholar
  51. 51.
    Bari R H, Ganesan V, Potadar S, Patil L A (2009) Structural, optical and electrical properties of chemically deposited copper selenide films. Bull Mater Sci 32:37Google Scholar
  52. 52.
    Muller J, Nowoczin J, Schmitt H (2006) Composition, structure and optical properties of sputtered thin films of CuInSe2. Thin Solid Films 496:364Google Scholar
  53. 53.
    Tauc J (1974) Amorphous and Liquid Semiconductors. Plenum Press, LondonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsManonmaniam Sundaranar UniversityTirunelveliIndia

Personalised recommendations