Advertisement

Ionics

, Volume 24, Issue 4, pp 989–999 | Cite as

Polyol technique synthesis of Nb2O5 coated on LiFePO4 cathode materials for Li-ion storage

  • R. Muruganantham
  • M. Sivakumar
  • R. Subadevi
Original Paper

Abstract

A novel approach has been made to tailor Niobium pentoxide (Nb2O5) as a coating material on the surface of lithium iron phosphate (LiFePO4) via a facile polyol technique. The coating content was optimized at 1 wt%. The superficial coating demonstrated superior discharge capacity than the pristine LiFePO4. However, increasing the coating content further would result in a capacity loss. This may be due to the electrochemical inactiveness that increases with the content of the coating material, and 1 wt% of Nb2O5-coated LiFePO4 sample exhibits initial discharge capacity of 163 mAh g−1 at a current of 0.1 C and retains a stable discharge capacity of 143 mAh g−1 up to 400 cycles at 1 C rate with a coulombic efficiency of 98%.

Graphical abstract

Keywords

Lithium iron phosphate Polyol technique Discharge capacity 

Notes

Funding information

One of the authors M.Sivakumar gratefully acknowledges for the financial support to carry out this work by Department of Science and Technology (DST), New Delhi, Government of India under DST-SERC major research project whose contract number is SR/S2/CMP-0049/2008.

References

  1. 1.
    Badwal SPS, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (2014) Emerging electrochemical energy conversion and storage technologies. Front Chem 2:79CrossRefGoogle Scholar
  2. 2.
    Wang L, Pan C, Liu L, Cheng Y, Zhao X (2016) On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis. Appl Energy 168:465–472CrossRefGoogle Scholar
  3. 3.
    Wang L, Cheng Y, Zhao X (2015) A LiFePO4 battery pack capacity estimation approach considering in-parallel cell safety in electric vehicles. Appl Energy 142:293–302CrossRefGoogle Scholar
  4. 4.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  5. 5.
    Fathollahi F, Javanbakht M, Omidvar H, Ghaemi M (2015) LiFePO4/C composite cathode via CuO modified graphene nanosheets with enhanced electrochemical performance. J Alloys Compd 643:40–48CrossRefGoogle Scholar
  6. 6.
    Ding B, Ji G, Sha Z, Wu J, Lu L, Lee JY (2015) Dual-carbon network for the effective transport of charged species in a LiFePO4 cathode for lithium-ion batteries. Energy Technol 3:63–69CrossRefGoogle Scholar
  7. 7.
    Chen Z, Zhao Q, Xu M, Li L, Duan J, Zhu H (2015) Electrochemical properties of self-assembled porous micro-spherical LiFePO4/PAS composite prepared by spray-drying method. Electrochim Acta 186:117–124CrossRefGoogle Scholar
  8. 8.
    Ke X, Zhao Z, Liu J, Shi Z, Li Y, Zhang L, Zhang H, Chen Y, Guo Z, Wu Q, Liu L (2017) Improvement in capacity retention of cathode material for high power density lithium ion batteries: the route of surface coating. Appl Energy 194:540–548CrossRefGoogle Scholar
  9. 9.
    Liu M, Yan C, Zhang Y (2015) Fabrication of Nb2O5 nanosheets for high-rate lithium ion storage applications. Sci Rep 5:8326CrossRefGoogle Scholar
  10. 10.
    Chen Z, Du B, Xu M, Zhu H, Li L, Wang W (2013) Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics. Electrochim Acta 109:262–268CrossRefGoogle Scholar
  11. 11.
    Fey GTK, Lu TL (2008) Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route. J Power Sources 178(2):807–814CrossRefGoogle Scholar
  12. 12.
    Lübke M, Sumboja A, Johnson I, Brett DJL, Shearing PR, Liu Z, Darr JA (2016) High power nano-Nb2O5 negative electrodes for lithium-ion batteries. Electrochim Acta 192:363–369CrossRefGoogle Scholar
  13. 13.
    Le Viet A, Jose R, Reddy MV, Chowdari BVR, Ramakrishna S (2010) Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph. J Phys Chem C 114:21795–21800CrossRefGoogle Scholar
  14. 14.
    Varghese B, Haur SC, Lim C-T (2008) Nb2O5 nanowires as efficient electron field emitters. J Phys Chem C 112:10008–10012CrossRefGoogle Scholar
  15. 15.
    Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRefGoogle Scholar
  16. 16.
    Delacourt C, Wurm C, Laffont L, Leriche JB, Masquelier C (2006) Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites. Solid State Ionics 177:333–341CrossRefGoogle Scholar
  17. 17.
    Wagemaker M, Ellis BL, Luetzenkirchen-Hecht D, Mulder FM, Nazar LF (2008) Proof of supervalent doping in olivine LiFePO4. Chem Mater 20:6313–6315CrossRefGoogle Scholar
  18. 18.
    Ma Z, Shao G, Wang G, Zhang Y, Du J (2014) Effects of Nb-doped on the structure and electrochemical performance of LiFePO4/C composites. J Solid State Chem 210:232–237CrossRefGoogle Scholar
  19. 19.
    Zhang P, Wang Y, Lin M, Zhang D, Ren X, Yuan Q (2012) Doping effect of Nb5+ on the microstructure and defects of LiFePO4. J Electrochem Soc 159:A402–A409CrossRefGoogle Scholar
  20. 20.
    Lim J, Kim D, Mathew V, Ahn D, Kang J, Kang S-W, Kim J (2011) Plate-type LiFePO4 nanocrystals by low temperature polyol-assisted solvothermal reaction and its electrochemical properties. J Alloys Compounds 509:8130–8135CrossRefGoogle Scholar
  21. 21.
    Muruganantham R, Sivakumar M, Subadevi R, Wu NL (2015) A facile synthesis and characterization of LiFePO4/C using simple binary reactants with oxalic acid by polyol technique and other high temperature methods. J Mater Sci Mater Electron 26:2095–2106CrossRefGoogle Scholar
  22. 22.
    Kim DH, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid-State Lett 9:A439–A442CrossRefGoogle Scholar
  23. 23.
    Sinha NN, Munichandraiah N (2010) Single-shot preparation of crystalline nanoplate LiFePO4 by a simple polyol route. J Electrochem Soc 157:A824–A829CrossRefGoogle Scholar
  24. 24.
    Guo B, Ruan H, Zheng C, Fei H, Wei M (2013) Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries. Sci Rep 3:2788CrossRefGoogle Scholar
  25. 25.
    Zhao M, Huang G, Zhang W, Zhang H, Song X (2013) Electrochemical behaviors of LiMn1–xFex PO4/C cathode materials in an aqueous electrolyte with/without dissolved oxygen. Energy and Fuels 27:1162–1167CrossRefGoogle Scholar
  26. 26.
    Lee J, Kumar P, Lee J, Moudgil BM, Singh RK (2013) ZnO incorporated LiFePO4 for high rate electrochemical performance in lithium ion rechargeable batteries. J Alloys Compounds 550:536–544CrossRefGoogle Scholar
  27. 27.
    Liu S, Yin H, Wang H, He J, Wang H (2014) Synthesis, characterization and electrochemical performances of MoO2 and carbon co-coated LiFePO4 cathode materials. Ceram Inter l40:3325–3331CrossRefGoogle Scholar
  28. 28.
    Orel B, Maćek M, Grdadolnik J, Meden A (1998) In situ UV-Vis and ex situ IR spectroelectrochemical investigations of amorphous and crystalline electrochromic Nb2O5 films in charged/discharged states. J Solid State Electrochem 2:221–236CrossRefGoogle Scholar
  29. 29.
    Mladenov M, Stoyanova R, Zhecheva E, Vassilev S (2001) Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochem Commun 3:410–416CrossRefGoogle Scholar
  30. 30.
    Burba CM, Frech R (2004) Raman and FTIR spectroscopic study of LixFePO4 ( 0 ⩽ x ⩽ 1 ). J Electrochem Soc 151:A1032–A1038CrossRefGoogle Scholar
  31. 31.
    Maccario M, Croguennec L, Desbat B, Couzi M, Le Cras F, Servant L (2008) Raman and FTIR spectroscopy investigations of carbon-coated LixFePO4 materials. J Electrochem Soc 155:A879–A886CrossRefGoogle Scholar
  32. 32.
    Bhagawat LI, Patil VS, Kale BB, Sonawane SH, Bhanvase BA, Pinjari DV, Ashokkumar M (2016) Sonoprocessing of LiFePO4 nanoparticles and nanocomposites for cathode material in lithium ion batteries. Polym Compos 37:1874–1880CrossRefGoogle Scholar
  33. 33.
    Ni J, Wang Y (2015) Temperature-driven structural evolution of carbon modified LiFePO4 in air. RSC Adv 5:30537–30541CrossRefGoogle Scholar
  34. 34.
    Marx N, Croguennec L, Carlier D, Bourgeois L, Kubiak P, Le Cras F, Delmas C (2010) Structural and electrochemical study of a new crystalline hydrated iron (III) phosphate FePO4· H2O obtained from LiFePO4(OH) by ion exchange. Chem Mater 22:1854–1861CrossRefGoogle Scholar
  35. 35.
    Fielicke A, Meijer G, Helden G (2003) Infrared spectroscopy of niobium oxide cluster cations in a molecular beam: identifying the cluster structures. J Am Chem Soc 125:3659–3667CrossRefGoogle Scholar
  36. 36.
    Fedorková A, Orináková R, Orinák A, Kupková M, Wiemhöfer H-D, Audinot JN, Guillot J (2012) Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network. Solid State Sci 14:1238–1243CrossRefGoogle Scholar
  37. 37.
    Li S, Liu X, Mi R, Liu H, Li Y, W-m L, Mei J (2014) A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process. ACS Appl Mater Interfaces 6:9449–9457CrossRefGoogle Scholar
  38. 38.
    Kong L, Zhang C, Wang J, Qiao W, Ling L, Long D (2016) Nanoarchitectured Nb2O5 hollow, Nb2O5@ carbon and NbO2@ carbon core-shell microspheres for ultrahigh-rate intercalation pseudocapacitors. Sci Rep 6:21177CrossRefGoogle Scholar
  39. 39.
    Ziolkowska D, Korona KP, Hamankiewicz B, Wu S-H, Chen M-S, Jasinski JB, Kaminska M, Czerwinski A (2013) The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials. Electrochim Acta 108:532–539CrossRefGoogle Scholar
  40. 40.
    Hu Y-S, Guo Y-G, Dominko R, Gaberscek M, Jamnik J (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19:1963–1966CrossRefGoogle Scholar
  41. 41.
    He J, Wang H, Gu C, Liu S (2014) Characterization and electrochemical performances of MoO2 modified LiFePO4/C cathode materials synthesized by in situ synthesis method. J Alloys Compd 604:239–244CrossRefGoogle Scholar
  42. 42.
    Liang S, Cao X, Wang Y, Hu Y, Pan A, Cao G (2016) Uniform 8LiFePO4· Li3V2(PO4)3/C nanoflakes for high-performance Li-ion batteries. Nano Energy 22:48–58CrossRefGoogle Scholar
  43. 43.
    Yang C-C, Jang J-H, Jiang J-R (2016) Study of electrochemical performances of lithium titanium oxide–coated LiFePO4/C cathode composite at low and high temperatures. Appl Energy 162:1419–1427CrossRefGoogle Scholar
  44. 44.
    Zhang J, Lu J, Bian D, Yang Z, Wu Q, Zhang W (2014) Solvothermal synthesis of hierarchical LiFePO4 microplates with exposed (010) faces as cathode materials for lithium ion batteries. Ind Eng Chem Res 53:12209–12215CrossRefGoogle Scholar
  45. 45.
    Liu S, Yin H, Wang H, He J (2013) Electrochemical performance of WO2 modified LiFePO4/C cathode material for lithium-ion batteries. J Alloys Compd 561:129–134CrossRefGoogle Scholar
  46. 46.
    Zhang L, Tang Y, Liu Z, Huang H, Fang Y, Huang F (2015) Synthesis of Fe2P coated LiFePO4 nanorods with enhanced Li-storage performance. J Alloys Compd 627:132–135CrossRefGoogle Scholar
  47. 47.
    Liao X-Z, Ma Z-F, Wang L, Zhang X-M, Jiang Y, He Y-S (2004) A novel synthesis route for LiFePO4/C cathode materials for lithium-ion batteries. Electrochem Solid-State Lett 7(12):A522–A525CrossRefGoogle Scholar
  48. 48.
    Liao X-Z, Ma Z-F, He Y-S, Zhang X-M, Wang L, Jiang Y (2005) Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries. J Electrochem Soc 152(10):A1969–A1973CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Physics, Science BlockAlagappa UniversityKaraikudiIndia
  2. 2.Department of Chemical EngineeringChung Yuan Christian UniversityChung-LiRepublic of China

Personalised recommendations