Ionics

, Volume 24, Issue 4, pp 1075–1081 | Cite as

Hard carbon derived from corn straw piths as anode materials for sodium ion batteries

Original Paper

Abstract

Hard carbon is considered as the most promising anode material for practical sodium ion batteries. Herein, we report biomass-derived hard carbon made from corn straw piths through a simple carbonization process. X-ray diffraction patterns and Raman spectra elucidated highly disordered structures, and high-resolution transmission electron microscopy confirmed that the hard carbons have many local ordered structures containing turbostratic nanodomains and more nanovoids surround the turbostratic nanodomains. The electrochemical performances of the hard carbons were systematically investigated in sodium ion batteries. By optimizing the carbonization temperature, the sample carbonized at 1400 °C (HC1400) exhibited high reversible capacity of 310 mAh g−1 and good cycling stability; the capacity can still retain 274 mAh g−1 after 100 cycles. More importantly, HC1400 can deliver reversible capacity of 206 mAh g−1 with 79% retention rate after 700 cycles measured at a current density of 200 mA g−1, which is much better than those in most previous reports. This study provides a way to develop inexpensive, renewable, and recyclable materials from biomasses towards next-generation energy storage applications.

Keywords

Hard carbon Corn straw piths Biomass-derived carbon Sodium ion batteries High performance 

Notes

Acknowledgements

This work was supported by NSFC (21421001 and 21773126) in China.

Supplementary material

11581_2017_2260_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1892 kb)

References

  1. 1.
    Dunn B, Kamath H, Tarascon J (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  2. 2.
    Bruce P, Scrosati B, Tarascon J (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  3. 3.
    Pan H, Hu Y, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRefGoogle Scholar
  4. 4.
    Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184CrossRefGoogle Scholar
  5. 5.
    Su L, Jing Y, Zhou Z (2011) Li ion battery materials with core-shell nanostructures. Nanoscale 3:3967–3983CrossRefGoogle Scholar
  6. 6.
    Zhong Y, Yang M, Zhou X, Luo Y, Wei J, Zhou Z (2015) Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites. Adv Mater 27:806–812CrossRefGoogle Scholar
  7. 7.
    Zhu Y, Qi X, Chen X, Zhou X, Zhang X, Wei J, Hu Y, Zhou Z (2016) A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 4:11103–11109CrossRefGoogle Scholar
  8. 8.
    Zhou X, Zhong Y, Yang M, Hu M, Wei J, Zhou Z (2014) Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem Commun 50:12888–12891CrossRefGoogle Scholar
  9. 9.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRefGoogle Scholar
  10. 10.
    Kim S, Seo D, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRefGoogle Scholar
  11. 11.
    Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033Google Scholar
  12. 12.
    Wang S, Xia L, Yu L, Zhang L, Wang H, Lou X (2016) Free-standing nitrogen-doped carbon nanofiber films:integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217CrossRefGoogle Scholar
  13. 13.
    Wang M, Yang Z, Li W, Gu L, Yu Y (2016) Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network. Small 12:2559–2566CrossRefGoogle Scholar
  14. 14.
    Zhang C, Wang X, Liang Q, Liu X, Weng Q, Liu J, Yang Y, Dai Z, Ding K, Bando Y, Tang J, Golberg D (2016) Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett 16:2054–2060CrossRefGoogle Scholar
  15. 15.
    Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48:1657–1665CrossRefGoogle Scholar
  16. 16.
    Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929CrossRefGoogle Scholar
  17. 17.
    Wang L, Bi X, Yang S (2016) Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv Mater 28:7672–7679CrossRefGoogle Scholar
  18. 18.
    Dong S, Shen L, Li H, Pang G, Dou H, Zhang X (2016) Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv Funct Mater 26:3703–3710CrossRefGoogle Scholar
  19. 19.
    Wu C, Jiang Y, Kopold P, van Aken PA, Maier J, Yu Y (2016) Peapod-like carbon-encapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes. Adv Mater 28:7276–7283CrossRefGoogle Scholar
  20. 20.
    Zhang N, Han X, Liu Y, Hu X, Zhao Q, Chen J (2015) 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv Energy Mater 5:1401123CrossRefGoogle Scholar
  21. 21.
    Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Ed 53:2152–2156CrossRefGoogle Scholar
  22. 22.
    Doeff M, Ma Y, Visco S, Jonghe L (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140:169–170CrossRefGoogle Scholar
  23. 23.
    Zhang B, Ghimbeu C, Laberty C, Vix-Guterl C, Tarascon J (2016) Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater 6:1501588CrossRefGoogle Scholar
  24. 24.
    Stevensa D, Dahn J (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRefGoogle Scholar
  25. 25.
    Li Y, Hu Y, Titirici M, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659CrossRefGoogle Scholar
  26. 26.
    Li Y, Hu Y, Li H, Chen L, Huang X (2016) A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J Mater Chem A 4:96–104CrossRefGoogle Scholar
  27. 27.
    Li Y, Xu S, Wu X, Yu J, Wang Y, Hu Y, Li H, Chen L, Huang X (2015) Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A 3:71–77CrossRefGoogle Scholar
  28. 28.
    Li Y, Mu L, Hu Y, Li H, Chen L, Huang X (2016) Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater 2:139–145CrossRefGoogle Scholar
  29. 29.
    Zhang J, Wang D, Lv W, Zhang S, Liang Q, Zheng D, Kang F, Yang Q (2017) Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci 10:370–376CrossRefGoogle Scholar
  30. 30.
    Xiao L, Cao Y, Henderson W, Sushko M, Shao Y, Xiao J, Wang W, Engelhard M, Nie Z, Liu J (2016) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288CrossRefGoogle Scholar
  31. 31.
    Ding J, Wang H, Li Z, Kohandehghan A, Cui K, Xu Z, Zahiri B, Tan X, Lotfabad E, Olsen B, Mitlin D (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015CrossRefGoogle Scholar
  32. 32.
    Cao Y, Xiao L, Sushko M, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRefGoogle Scholar
  33. 33.
    Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D (2015) Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ Sci 8:941–955CrossRefGoogle Scholar
  34. 34.
    Liu P, Li Y, Hu Y, Li H, Chen L, Huang X (2016) A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A 4:13046–13052CrossRefGoogle Scholar
  35. 35.
    Zhu Y, Yang L, Zhou X, Li F, Wei J, Zhou Z (2017) Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J Mater Chem A 5:9528–9532CrossRefGoogle Scholar
  36. 36.
    Wang S, Xiao C, Xing Y, Xu H, Zhang S (2015) Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries. J Mater Chem A 3:6742–6746CrossRefGoogle Scholar
  37. 37.
    Su L, Hei J, Wu X, Wang L, Wang Y (2015) Highly-dispersed Ni-QDs/mesoporous carbon nanoplates: a universal and commercially applicable approach based on corn straw piths and high capacitive performances. ChemElectroChem 2:1897–1902CrossRefGoogle Scholar
  38. 38.
    Lotfabad E, Ding J, Cui K, Kohandehghan A, Kalisvaart W, Hazelton M, Mitlin D (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8:7115–7129CrossRefGoogle Scholar
  39. 39.
    Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRefGoogle Scholar
  40. 40.
    Qiu S, Xiao L, Sushko M, Han K, Shao Y, Yan M, Liang X, Mai L, Feng J, Cao Y, Ai X, Yang H, Liu J (2017) Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater.  https://doi.org/10.1002/aenm.201700403
  41. 41.
    Wang P, Zhu X, Wang Q, Xu X, Zhou X, Bao J (2017) Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. J Mater Chem A 5:5761–5769CrossRefGoogle Scholar
  42. 42.
    Bommier C, Surta T, Dolgos M, Ji X (2015) New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett 15:5888–5892CrossRefGoogle Scholar
  43. 43.
    Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, National Institute for Advanced MaterialsNankai UniversityTianjinChina

Personalised recommendations