, Volume 24, Issue 4, pp 1153–1159 | Cite as

High frequency impedance spectroscopy study on Gd-doped CeO2 thin films

  • V. Venckutė
  • S. Kazlauskas
  • E. Kazakevičius
  • A. Kežionis
  • R. Korobko
  • T. Šalkus
Original Paper


The gadolinia-doped ceria (GDC) thin films were deposited by pulsed laser deposition. Samples with special geometry were prepared which allowed us to characterize GDC film in across-plane direction. The electrical properties of the films were investigated by means of impedance spectroscopy in the frequency range of 10 Hz to 10 GHz and 380–600 K temperature interval. The data analysis was performed by using appropriate equivalent circuit. The equivalent circuit modeled thin GDC film itself, platinum metal connections (traces) in the dielectric medium of sapphire substrate and interfaces between the film and platinum electrodes. Hence, several factors influenced the impedance spectra, namely the properties of substrate, the oxygen-ion transport in the film, ion blocking at the interface between the film and the electrode, and metal traces. The electrical properties of GDC thin films were compared with these of bulk ceramics and showed similar conductivity and dielectric permittivity values. The study also revealed that measurement data at electrical field frequencies of up to 10 GHz were particularly important to correctly estimate electrical properties of GDC thin films, because at high temperatures the electric response of GDC film shifts to high frequencies (higher than 1 MHz at 600 K). The thin film sample preparation for high frequency measurements and fitting of impedance data by using relatively simple equivalent circuit model is presented.


Impedance spectroscopy Gadolinia-doped ceria Oxygen-ion conductivity Thin film Pulsed laser deposition 



The research leading to these results has received funding from Lithuanian-Swiss cooperation programme to reduce economic and social disparities within the enlarged European Union under project agreement n° CH-3-ŠMM-02/06. We sincerely thank Dr. Felix Messerschmitt, Rafael Schmitt, Eva Sediva, and Prof. Jennifer L.M. Rupp for their help with sample preparation at Electrochemical Materials, ETH-Zurich and for valuable discussions.


  1. 1.
    Skinner SJ, Kilner JA (2003) Oxygen ion conductors. Mater Today 6(3):30–37CrossRefGoogle Scholar
  2. 2.
    Kharton VV, Marques FMB, Atkinson A (2004) Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174:135–149CrossRefGoogle Scholar
  3. 3.
    Haile SM (2003) Materials for fuel cells. Mater Today 6(3):24–29CrossRefGoogle Scholar
  4. 4.
    Suna C, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Power Sources 171:247–260CrossRefGoogle Scholar
  5. 5.
    Zon I, Shelukhin V (2012) Anomalies in the gadolinium doped ceria resistance below 90 K. Mater Chem Phys 134:219–223CrossRefGoogle Scholar
  6. 6.
    Schweiger S, Pfenninger R, Bowman WJ, Aschauer U, Rupp JLM (2017) Designing strained interface heterostructures for memristive devices. Adv Mater 29(15):1605049 (11 pp.)Google Scholar
  7. 7.
    Korobko R, Lerner A, Li Y, Wachtel E, Frenkel AI, Lubomirsky I (2015) In-situ extended X-ray absorption fine structure study of electrostriction in Gd doped ceria. Appl Phys Lett 106(4):042904 (5 pp.)Google Scholar
  8. 8.
    Park Y-i SPC, Cha SW, Saito Y, Prinz FB (2006) Thin-film SOFCs using gastight YSZ thin films on nanoporous substrates. J Electrochem Soc 153(2):A431–A436CrossRefGoogle Scholar
  9. 9.
    Xia C, Zha S, Yang W, Peng R, Peng D, Meng G (2000) Preparation of yttria stabilized zirconia membranes on porous substrates by a dip-coating process. Solid State Ionics 133:287–294CrossRefGoogle Scholar
  10. 10.
    Rupp JLM, Infortuna A, Gauckler LJ (2007) Thermodynamic stability of gadolinia-doped ceria thin film electrolytes for micro-solid oxide fuel cells. J Am Ceram Soc 90(6):1792–1797CrossRefGoogle Scholar
  11. 11.
    Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321:676–680CrossRefGoogle Scholar
  12. 12.
    Yao L, Nishijima H, Pan W (2016) Contrary interfacial effects for textured and non-textured multilayer solid oxide electrolytes. RSC Adv 6:34390–34398CrossRefGoogle Scholar
  13. 13.
    Navickas E, Gerstl M, Kubel F, Fleig J (2012) Simultaneous measurement of the in- and across-plane ionic conductivity of YSZ thin films. J Electrochem Soc 159(4):B411–B416CrossRefGoogle Scholar
  14. 14.
    Kezionis A, Kazlauskas S, Petrulionis D, Orliukas AF (2014) Broadband method for the determination of small sample’s electrical and dielectric properties at high temperatures. IEEE Trans Microw Theory Tech 62(10):2456–2461CrossRefGoogle Scholar
  15. 15.
    Kazlauskas S, Kežionis A, Šalkus T, Orliukas AF (2015) Effect of sintering temperature on electrical properties of gadolinium-doped ceria ceramics. J Mater Sci 50:3246–3251CrossRefGoogle Scholar
  16. 16.
    Kežionis A, Petrulionis D, Kazakevičius E, Kazlauskas S, Žalga A, Juškėnas R (2016) Charge carrier relaxation phenomena and phase transition in La2Mo2O9 ceramics investigated by broadband impedance spectroscopy. Electrochim Acta 213:306–313CrossRefGoogle Scholar
  17. 17.
    Kudo T, Obayashi H (1976) Mixed electrical conduction in the fluorite-type Ce1−xGdxO2−x/2. J Electrochem Soc 123:415–419CrossRefGoogle Scholar
  18. 18.
    Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94CrossRefGoogle Scholar
  19. 19.
    Steele BCH (2000) Appraisal of Ce1–yGdyO2–y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129(1):95–110CrossRefGoogle Scholar
  20. 20.
    Fu Y-P, Chang Y-S, Wen S-B (2006) Microwave-induced combustion synthesis and electrical conductivity of Ce1−xGdxO2−1/2x ceramics. Mater Res Bull 41:2260–2267CrossRefGoogle Scholar
  21. 21.
    Kežionis A, Kazlauskas S (2013) High temperature ultra broadband impedance spectrometer. International Workshop on Impedance Spectroscopy 2013, Chemnitz, Germany, p 32–33Google Scholar
  22. 22.
    Kežionis A, Butvilas P, Šalkus T, Kazlauskas S, Petrulionis D, Žukauskas T, Kazakevičius E, Orliukas AF (2013) Review of scientific instruments 84:013902 (8 pp.)Google Scholar
  23. 23.
    Birkholz M (2006) Thin film analysis by X-ray scattering. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy, theory, experiment, and applications. John Wiley and Sons, New JerseyCrossRefGoogle Scholar
  25. 25.
    Kazlauskas S, Kežionis A, Šalkus T, Orliukas A (2014) Charge carrier relaxation in solid \( {V}_O^{\bullet \bullet } \) conductors. Solid State Ionics 262:593–596Google Scholar
  26. 26.
    Chiodelli G, Malavasi L, Massarotti V, Mustarelli P, Quartarone E (2005) Synthesis and characterization of Ce0.8Gd0.2O2−y polycrystalline and thin film materials. Solid State Ionics 176:1505–1512CrossRefGoogle Scholar
  27. 27.
    Lee KR, Ahn K, Chung YC, Lee JH, Yoo HI (2012) Lattice distortion effect on electrical properties of GDC thin films: experimental evidence and computational simulation. Solid State Ionics 229:45–53CrossRefGoogle Scholar
  28. 28.
    Joo JH, Choi GM (2007) Electrical conductivity of thin film ceria grown by pulsed laser deposition. J Eur Ceram Soc 27:4273–4277CrossRefGoogle Scholar
  29. 29.
    Shi Y, Bork AH, Schweiger S, Rupp JLM (2015) The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes. Nat Mater 14:21–728CrossRefGoogle Scholar
  30. 30.
    Shi Y, Garbayo I, Muralt P, Rupp JLM (2017) Micro-solid state energy conversion membranes: influence of doping and strain on oxygen ion transport and near order for electrolytes. J Mater Chem A 5:3900–3908CrossRefGoogle Scholar
  31. 31.
    Pergolesi D, Esposito V, Tebano A, Medaglia PG, Sanna S, Licoccia A, Balestrino G, Traversa E (2007) Ceria-based thin film hetero-structure growth and characterization for SOFC applications. ECS Trans 7(1):891–898Google Scholar
  32. 32.
    Christie GM, van Berkel FOPF (1996) Microstructure-ionic conductivity relationships in ceria-gadolinia electrolytes. Solid State Ionics 83:17–27CrossRefGoogle Scholar
  33. 33.
    Yeh TC, Perry NH, Mason TO (2011) Nanograin composite model studies of nanocrystalline gadolinia-doped ceria. J Am Ceram Soc 94:1073–1078CrossRefGoogle Scholar
  34. 34.
    Beekmans NM, Heyne L (1976) Correlation between impedance, microstructure and composition of calcia-stabilized zirconia. Electrochim Acta 21(4):303–310CrossRefGoogle Scholar
  35. 35.
    Tuller HL, Bishop SR (2011) Point defects in oxides: tailoring materials through defect engineering. Ann Rev Mater Res 41:369–398CrossRefGoogle Scholar
  36. 36.
    Kidner NJ, Homrighaus ZJ, Ingram BJ, Mason TO, Garboczi EJ (2005) Impedance/dielectric spectroscopy of electroceramics–part 1: evaluation of composite models for polycrystalline ceramics. J Electroceram 14:283–291CrossRefGoogle Scholar
  37. 37.
    Irvine JTS, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138CrossRefGoogle Scholar
  38. 38.
    Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 51:151–210CrossRefGoogle Scholar
  39. 39.
    Gryaznov D, Fleig J, Maier J (2008) Finite element simulation of diffusion into polycrystalline materials. Solid State Sci 10:754–760CrossRefGoogle Scholar
  40. 40.
    Kim YB, Shim JH, Gur TM, Prinz FB (2011) Epitaxial and polycrystalline gadolinia-doped ceria cathode interlayers for low temperature solid oxide fuel cells. J Electrochem Soc 158(11):B1453–B1457CrossRefGoogle Scholar
  41. 41.
    Develos-Bagarinao K, Kishimoto H, Yamaji K, Horita T, Yokokawa H (2015) Evidence for enhanced oxygen surface exchange reaction in nanostructured Gd2O3-doped CeO2 films. Nanotechnology 26:215401 (9 pp.)CrossRefGoogle Scholar
  42. 42.
    Infortuna A, Harvey AS, Gauckler LJ (2008) Microstructures of CGO and YSZ thin films by pulsed laser deposition. Adv Funct Mater 18:127–135CrossRefGoogle Scholar
  43. 43.
    Rupp JLM, Infortuna A, Gauckler LJ (2006) Microstrain and self-limited grain growth in nanocrystalline ceria ceramics. Acta Mater 54:1721–1730CrossRefGoogle Scholar
  44. 44.
    Esposito V, Ni DW, Sanna S, Gualandris F, Pryds N (2017) Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films. RSC Adv 7:13784–13788CrossRefGoogle Scholar
  45. 45.
    Muthukkumaran K, Kuppusami P, Kesavamoorthy R, Mathews T, Mohandas E, Raghunathan VS, Selladurai S (2008) Microstructural studies of bulk and thin film GDC. Ionics 14:165–171CrossRefGoogle Scholar
  46. 46.
    Wanzenberg E, Tietz F, Kek D, Panjan P, Stöver D (2003) Influence of electrode contacts on conductivity measurements of thin YSZ electrolyte films and the impact on solid oxide fuel cells. Solid State Ionics 164:121–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • V. Venckutė
    • 1
  • S. Kazlauskas
    • 1
  • E. Kazakevičius
    • 1
  • A. Kežionis
    • 1
  • R. Korobko
    • 2
  • T. Šalkus
    • 1
  1. 1.Faculty of PhysicsVilnius UniversityVilniusLithuania
  2. 2.Electrochemical MaterialsETH ZurichZurichSwitzerland

Personalised recommendations