, Volume 24, Issue 4, pp 1039–1048 | Cite as

Si/polyaniline-based porous carbon composites with an enhanced electrochemical performance as anode materials for Li-ion batteries

  • Shuo Zhao
  • Cong Yao
  • Leiming Sun
  • Xiaochao Xian
Original Paper


Silicon/polyaniline-based porous carbon (Si/PANI-AC) composites have been prepared by a three-step method: coating polyaniline on Si particles using in situ polymerization, carbonizing, and further activating by steam. The morphology and structure of Si/PANI-AC composites have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectra, respectively. The content and pore structure of the carbon coating layer in Si/PANI-AC have been measured by thermogravimetric analysis and N2 adsorption-desorption isotherm, respectively. The results indicate some micropores about 1~2 nm in the carbon layer appear during activation and that crystal structure and morphology of Si particles can be retained during preparation. Si/PANI-AC composites exhibit high discharge capacity about 1000 mAh g−1 at 1.5 A g−1; moreover, when the current density returns to 0.2 A g−1, the discharge capacity is still 1692 mAh g−1 and remains 1453 mAh g−1 after 70 cycles. The results indicate that the porous carbon coating layer in composites plays an important role in the improvement of the electrochemical performance of pure Si.


Silicon/polyaniline-based porous carbon Composites Steam activation Electrochemical performance Li-ion batteries 



The authors are grateful to the Fundamental Research Funds for the Central Universities (no. CQDXWL-2014-Z008) and the Chongqing Foundation and Advanced Research Projects (no. cstc2016jcyjA0462) for financial assistance.

Supplementary material

11581_2017_2258_MOESM1_ESM.doc (822 kb)
ESM 1 (DOC 821 kb)


  1. 1.
    Jeong YK, T-w K, Lee I, Kim T-S, Coskun A, Choi JW (2014) Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett 14:864–870CrossRefGoogle Scholar
  2. 2.
    Fan X, Jiang X, Wang W, Liu Z (2016) Green synthesis of nanoporous Si/C anode using NaCl template with improved cycle life. Mater Lett 180:109–113CrossRefGoogle Scholar
  3. 3.
    Zhao Q, Xiao W, Yan X, Qin S, Qu B, Zhao L (2017) Effect of pyrolytic polyacrylonitrile on electrochemical performance of Si/graphite composite anode for lithium-ion batteries. Ionics:1–8Google Scholar
  4. 4.
    Sasidharachari K, Na BK, Woo SG, Yoon S, Cho KY (2016) Facile conductive surface modification of Si nanoparticle with nitrogen-doped carbon layers for lithium-ion batteries. J Solid State Electr 20:2873–2878CrossRefGoogle Scholar
  5. 5.
    Ashuri M, He Q, Liu Y, Zhang K, Emani S, Sawicki MS, Shamie JS, Shaw LL (2016) Hollow silicon nanospheres encapsulated with a thin carbon shell: an electrochemical study. Electrochim Acta 215:126–141CrossRefGoogle Scholar
  6. 6.
    Wang J, Wang C, Zhu Y, Wu N, Tian W (2015) Electrochemical stability of optimized Si/C composites anode for lithium-ion batteries. Ionics 21:579–585CrossRefGoogle Scholar
  7. 7.
    Mi H, Li F, He C, Chai X, Zhang Q, Li C, Li Y, Liu J (2016) Three-dimensional network structure of silicon-graphene-polyaniline composites as high performance anodes for lithium-ion batteries. Electrochim Acta 190:1032–1040CrossRefGoogle Scholar
  8. 8.
    Ma D, Cao Z, Hu A (2014) Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro Letters 6:347–358CrossRefGoogle Scholar
  9. 9.
    Min SH, Jo MR, Song DH, Song K, Yang J, Kang Y-M (2016) High crystalline carbon network of Si/C nanofibers obtained from the embedded pitch and its contribution to Li ion kinetics. Electrochim Acta 220:511–516CrossRefGoogle Scholar
  10. 10.
    Hwang SM, Kim SY, Kim J-G, Kim KJ, Lee J-W, Park M-S, Kim Y-J, Shahabuddin M, Yamauchi Y, Kim JH (2015) Electrospun manganese-cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nano 7:8351–8355Google Scholar
  11. 11.
    Wang W, Favors Z, Ionescu R, Ye R, Bay HH, Ozkan M, Ozkan CS (2015) Monodisperse porous silicon spheres as anode materials for lithium ion batteries. Sci Rep-Uk 5Google Scholar
  12. 12.
    Chen C, Lee SH, Cho M, Kim J, Lee Y (2016) Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries. Acs Appl Mater Inter 8:2658–2665CrossRefGoogle Scholar
  13. 13.
    Wu M, Xiao X, Vukmirovic N, Xun S, Das PK, Song X, Olalde-Velasco P, Wang D, Weber AZ, Wang L-W, Battaglia VS, Yang W, Liu G (2013) Toward an ideal polymer binder design for high-capacity battery anodes. J Am Chem Soc 135:12048–12056CrossRefGoogle Scholar
  14. 14.
    Gu J, Zeng Y, Feng X, Wu X, Zeng C, Li M (2016) Synthesis of nanosilicon@nonstoichiometric silicon oxide from bulk silicon dioxide and its lithium storage properties. J Alloys Compd 662:185–192CrossRefGoogle Scholar
  15. 15.
    Yang HS, Kim SH, Kannan AG, Kim SK, Park C, Kim DW (2016) Performance enhancement of silicon alloy-based anodes using thermally treated poly(amide imide) as a polymer binder for high performance lithium-ion batteries. Langmuir 32:3300–3307CrossRefGoogle Scholar
  16. 16.
    Gómez-Cámer JL, Bünzli C, Hantel MM, Poux T, Novák P (2016) On the correlation between electrode expansion and cycling stability of graphite/Si electrodes for Li-ion batteries. Carbon 105:42–51CrossRefGoogle Scholar
  17. 17.
    Sun W, Hu R, Zhang M, Liu J, Zhu M (2016) Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries. J Power Sources 318:113–120CrossRefGoogle Scholar
  18. 18.
    Sun W, Hu R, Zhang H, Wang Y, Yang L, Liu J, Zhu M (2016) A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling. Electrochim Acta 187:1–10CrossRefGoogle Scholar
  19. 19.
    Sun W, Hu R, Liu H, Zhang H, Liu J, Yang L, Wang H, Zhu M (2016) Silicon/Wolfram Carbide@Graphene composite: enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance. Electrochim Acta 191:462–472CrossRefGoogle Scholar
  20. 20.
    Hu R, Sun W, Chen Y, Zeng M, Zhu M (2014) Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries. J Mater Chem A 2:9118CrossRefGoogle Scholar
  21. 21.
    Shen X, Jiang W, Sun H, Wang Y, Dong A, Hu J, Yang D (2017) Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries. J Alloys Compd 691:178–184CrossRefGoogle Scholar
  22. 22.
    Sohn M, Kim DS, Park H-I, Kim J-H, Kim H (2016) Porous silicon-carbon composite materials engineered by simultaneous alkaline etching for high-capacity lithium storage anodes. Electrochim Acta 196:197–205CrossRefGoogle Scholar
  23. 23.
    Zhang H, Li X, Guo H, Wang Z, Zhou Y (2016) Hollow Si/C composite as anode material for high performance lithium-ion battery. Powder Technol 299:178–184CrossRefGoogle Scholar
  24. 24.
    Luo W, Wang Y, Chou S, Xu Y, Li W, Kong B, Dou SX, Liu HK, Yang J (2016) Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy 27:255–264CrossRefGoogle Scholar
  25. 25.
    Jeong S, Li X, Zheng J, Yan P, Cao R, Jung HJ, Wang C, Liu J, Zhang J-G (2016) Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries. J Power Sources 329:323–329CrossRefGoogle Scholar
  26. 26.
    Li J, Wang J, Yang J, Ma X, Lu S (2016) Scalable synthesis of a novel structured graphite/silicon/pyrolyzed-carbon composite as anode material for high-performance lithium-ion batteries. J Alloys Compd 688(Part A):1072–1079CrossRefGoogle Scholar
  27. 27.
    Zhang C, Song A, Yuan P, Wang Q, Wang P, Zhang S, Cao G, Hu JH (2016) Amorphous carbon shell on Si particles fabricated by carbonizing of polyphosphazene and enhanced performance as lithium ion battery anode. Mater Lett 171:63–67CrossRefGoogle Scholar
  28. 28.
    Kobayashi N, Inden Y, Endo M (2016) Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery. J Power Sources 326:235–241CrossRefGoogle Scholar
  29. 29.
    Jiang B, Zeng S, Wang H, Liu D, Qian J, Cao Y, Yang H, Ai X (2016) Dual core–shell structured Si@SiOx@C nanocomposite synthesized via a one-step pyrolysis method as a highly stable anode material for lithium-ion batteries. ACS Appl Mater Inter 8:31611–31616CrossRefGoogle Scholar
  30. 30.
    Nava R, Cremar L, Agubra V, Sánchez J, Alcoutlabi M, Lozano K (2016) Centrifugal spinning: an alternative for large scale production of silicon–carbon composite nanofibers for lithium ion battery anodes. ACS Appl Mater Inter 8:29365–29372CrossRefGoogle Scholar
  31. 31.
    Jeong M-G, Islam M, Du HL, Lee Y-S, Sun H-H, Choi W, Lee JK, Chung KY, Jung H-G (2016) Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries. Electrochim Acta 209:299–307CrossRefGoogle Scholar
  32. 32.
    Zhou R, Guo H, Yang Y, Wang Z, Li X, Zhou Y (2016) An alternative carbon source of silicon-based anode material for lithium ion batteries. Powder Technol 295:296–302CrossRefGoogle Scholar
  33. 33.
    Tao H-C, Huang M, Fan L-Z, Qu X (2013) Effect of nitrogen on the electrochemical performance of core–shell structured Si/C nanocomposites as anode materials for Li-ion batteries. Electrochim Acta 89:394–399CrossRefGoogle Scholar
  34. 34.
    Lin N, Zhou J, Wang L, Zhu Y, Qian Y (2015) Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. ACS Appl Mater Inter 7:409–414CrossRefGoogle Scholar
  35. 35.
    Feng MY, Tian JH, Xie HM, Kang YL, Shan ZQ (2015) Nano-silicon/polyaniline composites with an enhanced reversible capacity as anode materials for lithium ion batteries. J Solid State Electr 19:1773–1782CrossRefGoogle Scholar
  36. 36.
    S.Y. Chew, Z.P. Guo, J.Z. Wang, J. Chen, P. Munroe, S.H. Ng, L. Zhao, H.K. Liu (2007) Novel nano-silicon/polypyrrole composites for lithium storage, Electrochemistry Communications 9 ,941–946Google Scholar
  37. 37.
    Shao D, Tang D, Mai Y, Zhang L (2013) Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J Mater Chem A 1:15068–15075CrossRefGoogle Scholar
  38. 38.
    Hou X, Zhang M, Wang J, Hu S, Liu X, Shao Z (2015) High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries. J Alloys Compd 639:27–35CrossRefGoogle Scholar
  39. 39.
    Biserni E, Xie M, Brescia R, Scarpellini A, Hashempour M, Movahed P, George SM, Bestetti M, Li Bassi A, Bruno P (2015) Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method. J Power Sources 274:252–259CrossRefGoogle Scholar
  40. 40.
    Zhu WB, Zhuang ZY, Yang YM, Zhang RD, Lin ZY, Lin YB, Huang ZG (2016) Synthesis and electrochemical performance of hole-rich Li4Ti5O12 anode material for lithium-ion secondary batteries. J Phys Chem Solids 93:52–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations