, Volume 24, Issue 4, pp 1227–1233 | Cite as

Fabrication and characterization of next generation nano-structured organo-lead halide-based perovskite solar cell

  • Abhishek Dhar
  • Argha Dey
  • Pradip Maiti
  • Pabitra Kumar Paul
  • Subhasis Roy
  • Sharmistha Paul
  • Rohit L. Vekariya
Original Paper


Generation of alternative source of energy is one of the talks of the present decade. In the present work, the focus has been given to produce energy from perovskite-based solar cells. For this purpose, a unique and novel nano-structured perovskite material ethyl ammonium lead chloride (C2H5NH3 +PbCl3 ) was prepared through a novel co-precipitation route using ethyl amine (C2H5NH2) and hydrochloric acid as the starting precursors with aqueous solution of Pb(CH3COO)23H2O. Finally acetic acid was added in the solution, and this solution was allowed to concentrate and cooled down at room temperature. Then the synthesized material was deposited over TiO2 film in order to fabricate the solar cell. Systematic study using XRD, SEM, UV, and photo conversion were conducted to properly analyze the structural, optical, and electrical properties of device. In the presence of light, this perovskite-based solar cell has shown energy conversion efficiency (η) of around 5.2% which is appreciably good. This result has depicted that this material is promising material for fabrication of highly efficient solar cells. This technology can be applied in industrial scale as substitute of the conventional energy in the future.

Graphical abstract


Energy Band gap Solar cell Perovskite materials 



Dr. Rohit L. Vekariya was thankful to Ton Duc Thang University (TDTU-DEMASTED) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Weber D (1978) CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z Naturforsch 33b:1443–1445Google Scholar
  2. 2.
    Gratzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842CrossRefGoogle Scholar
  3. 3.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRefGoogle Scholar
  4. 4.
    Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nano 3:4088–4093Google Scholar
  5. 5.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Baker RH, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-aolid-statesubmicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRefGoogle Scholar
  6. 6.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647CrossRefGoogle Scholar
  7. 7.
    Burschka J, Pellet N, Moon SJ, Baker RH, Gao P, Nazeeruddin MK, Graatzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319CrossRefGoogle Scholar
  8. 8.
    Zhou HP, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong ZR, You JB, Liu YS, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546CrossRefGoogle Scholar
  9. 9.
    Soni SS, Fadadu KB, Vaghasiya JV, Solanki BG, Sonigara KK, Singh A, Das D, Iyer PK (2015) Improved molecular architecture of D–π–a carbazole dyes: 9% PCE with a cobalt redox shuttle in dye sensitized solar cells. J Mater Chem A 3:21664–21671CrossRefGoogle Scholar
  10. 10.
    Lotsch BV (2014) New light on an old story: perovskites go solar. Angew Chem Int Ed 53:635–637CrossRefGoogle Scholar
  11. 11.
    Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ (2013) Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun 4:2761–2766CrossRefGoogle Scholar
  12. 12.
    You J, Hong Z, Yang Y, Chen Q, Cai M, Song TB, Chen CC, Lu S, Liu Y, Zhou H, Yang Y (2014) Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8:1674–1680CrossRefGoogle Scholar
  13. 13.
    Wei Z, Chen H, Yan K, Yang S (2014) Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed 53:13239–13243CrossRefGoogle Scholar
  14. 14.
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344CrossRefGoogle Scholar
  15. 15.
    Xing G, Mathews N, Sun S, Lim SS, Lam YM, Gratzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347CrossRefGoogle Scholar
  16. 16.
    Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26:1584–1589CrossRefGoogle Scholar
  17. 17.
    Green MA, Baillie AH, Snaith HJ (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8:133–138CrossRefGoogle Scholar
  18. 18.
    Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480CrossRefGoogle Scholar
  19. 19.
    Vekariya RL, Sonigara KK, Fadadu KB, Vaghasiya JV, Soni SS (2016) Humic acid as a sensitizer in highly stable dye solar cells: energy from an abundant natural polymer soil component. ACS Omega 1:14–18CrossRefGoogle Scholar
  20. 20.
    Raju TB, Vaghasiya JV, Afroz MA, Soni SS, Iyer PK (2016) Influence of m-fluorine substituted phenylene spacer dyes in dye-sensitized solar cells. Org Electron 39:371–379CrossRefGoogle Scholar
  21. 21.
    Soni SS, Fadadu KB, Vekariya RL, Debgupta J, Patel KD, Gibaud A, Aswal VK (2014) Effect of self-assembly on triiodide diffusion in water based polymer gel electrolytes: an application in dye solar cell. J Colloid Interface Sci 425:110–117CrossRefGoogle Scholar
  22. 22.
    Raju TB, Vaghasiya JV, Afroz MA, Soni SS, Iyer PK (2016) Design, synthesis and DSSC performance of o-fluorine substituted phenylene spacer sensitizers: effect of TiO2 thickness variation. Phys Chem Chem Phys 18:28485–28491CrossRefGoogle Scholar
  23. 23.
    Vekariya RL, Vaghasiya JV, Dhar A (2017) Coumarin based sensitizers with ortho-halides substituted phenylene spacer for dye sensitized solar cells. Org Electron 48:291–297CrossRefGoogle Scholar
  24. 24.
    Borriello I, Cantele G, Ninno D (2008) Ab initio investigation of hybrid organic inorganic perovskites based on tin halides. Phys Rev B 77:235214CrossRefGoogle Scholar
  25. 25.
    Mitzi DB (1999) Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog Inorg Chem 48:1–121Google Scholar
  26. 26.
    Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Liu X (2012) Dye-sensitized solar cell goes solid. Small 8:3711–3713CrossRefGoogle Scholar
  28. 28.
    Liang PW, Liao CY, Chueh CC, Zuo F, Williams ST, Xin XK, Lin J, Jen AK (2014) Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater 26:3748–3754CrossRefGoogle Scholar
  29. 29.
    Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG (2014) Lead-free solidstate organic-inorganic halide perovskite solar cells. Nat Photonics 8:489–494CrossRefGoogle Scholar
  30. 30.
    Laban WA, Etgar L (2013) Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ Sci 6:3249–3253CrossRefGoogle Scholar
  31. 31.
    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H (2014) A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345:295–298CrossRefGoogle Scholar
  32. 32.
    Wang JTW, Ball JM, Barea EM, Abate A, Alexander-Webber JA, Huang J, Saliba M, Mora-Sero IN, Bisquert J, Snaith HJ (2014) Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730CrossRefGoogle Scholar
  33. 33.
    Chiarella F, Zappettini A, Licci F, Borriello I, Cantele G, Ninno D, Cassinese A, Vaglio R (2008) Combined experimental and theoretical investigation of optical, structural and electronic properties of CH3NH3SnX3 thin films (X=Cl,Br). Phys Rev B 77:0451294–1–0451294-6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Abhishek Dhar
    • 1
  • Argha Dey
    • 2
  • Pradip Maiti
    • 1
  • Pabitra Kumar Paul
    • 3
  • Subhasis Roy
    • 2
  • Sharmistha Paul
    • 1
  • Rohit L. Vekariya
    • 4
    • 5
  1. 1.West Bengal State Council of Science & TechnologyKolkataIndia
  2. 2.Department of Chemical Engineering, Rajabazar Science CollegeUniversity of CalcuttaKolkataIndia
  3. 3.Department of PhysicsJadavpur UniversityKolkataIndia
  4. 4.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations