Skip to main content

Synthesis of LiCoO2 via sol-gel method for aqueous rechargeable lithium batteries

Abstract

A crystalline structure of LiCoO2 sample was synthesized at different stirring times via sol-gel method. This was followed by the electrochemical characterization of LiCoO2 in 5 M LiNO3 aqueous electrolyte. The hexagonal LiCoO2 was stirred for 30 h produced the highest peak intensity and smallest particle size. A morphological analysis showed the particle size distribution within the range of 0.32–0.47 μm. At lower scan rates of cyclic voltammetry, three pairs of redox peaks at ESCE = 0.81/0.65, 0.89/0.83 and 1.01/0.95 V were observed. The peak separation was proportionally consistent with Li+ diffusion coefficients of 7.42 × 10−8 cm2 s−1 (anodic) and 3.59 × 10−8 cm2 s−1 (cathodic). For specific capacity, the LiCoO2 demonstrated a higher initial specific capacity (115.49 mA h g−1). A small difference (1.92 Ω) in the charge transfer resistance before and after a charge discharge analysis indicated that the Li+ ions had been well-diffused during the intercalation/de-intercalation process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Liu XH, Saito T, Doi T, Okada S, Yamaki JI (2009) Electrochemical properties of rechargeable aqueous lithium ion batteries with an olivine-type cathode and a Nasicon-type anode. J Power Sources 189:706–710

    CAS  Article  Google Scholar 

  2. Ruffo R, La Mantia F, Wessells C, Huggins RA, Cui Y (2011) Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte. Solid State Ionics 192:289–292

    CAS  Article  Google Scholar 

  3. Alias N, Mohamad AA (2015) Advances of aqueous rechargeable lithium-ion battery: a review. J Power Sources 274:237–251

    CAS  Article  Google Scholar 

  4. Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R (2009) Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution. Electrochim Acta 54:1199–1203

    CAS  Article  Google Scholar 

  5. Guan T, Zuo P, Sun S, Du C, Zhang L, Cui Y, Yang L, Gao Y, Yin G, Wang F (2014) Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests. J Power Sources 268:816–823

    CAS  Article  Google Scholar 

  6. Asgari S, Soltanmohammad S (2010) Characterization of LiCoO2 nanopowders produced by sol-gel processing. J Nanomater 8:1–8. doi:10.1155/2010/104012

    Google Scholar 

  7. Predoana L, Jitianu A, Preda S, Malic B, Zaharescu M (2015) Thermal behavior of Li–Co-citric acid water-based gels as precursors for LiCoO2 powders. J Therm Anal Calorim 119:145–153

    CAS  Article  Google Scholar 

  8. Zhu C, Yang C, Yang W-D, Hsieh C-Y, Ysai H-M, Chen Y-S (2010) High performances of ultrafine and layered LiCoO2 powders for lithium batteries by a novel sol–gel process. J Alloys Compd 496:703–709

    CAS  Article  Google Scholar 

  9. Heli H, Yadegari H, Jabbari A (2012) A study of the lithium intercalation into nanoparticles of LiCoO2 from an aqueous solution. J Appl Electrochem 42:279–289

    CAS  Article  Google Scholar 

  10. Ou Y, Wen J, Xu H, Xie S, Li J (2013) Ultrafine LiCoO2 powders derived from electrospun nanofibers for Li-ion batteries. J Phys Chem Solids 74:322–327

    CAS  Article  Google Scholar 

  11. Alias N, Mohamad AA (2014) Synthesis and electrochemical behavior of LiFePO4/C with an air–electrode in an aqueous lithium ion battery. Ceram Int 40(8, Part B):13089–13096

    CAS  Article  Google Scholar 

  12. Tang W, Liu LL, Tian S, Li L, Yue YB, Wu YP, Guan SY, Zhu K (2010) Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochem Commun 12(11):1524–1526

    CAS  Article  Google Scholar 

  13. Qu Q, Fu L, Zhan X, Samuelis D, Maier J, Li L, Tian S, Li Z, Wu Y (2011) Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ Sci 4:3985–3990

    CAS  Article  Google Scholar 

  14. Predoană L, Barău A, Zaharescu M, Vassilchina H, Velinova N, Banov B, Momchilov A (2007) Electrochemical properties of the LiCoO2 powder obtained by sol–gel method. J Eur Ceram Soc 27:1137–1142

    Article  Google Scholar 

  15. Zeng XL, Huang YY, Luo FL, He YB, Tong DG (2010) Synthesis of LiCoO2 by l-apple acid assisted sol–gel method and its electrochemical behavior in aqueous lithium-ion battery. J Sol-Gel Sci Technol 54:139–146

    CAS  Article  Google Scholar 

  16. Mei T, Tang K, Zhu Y, Qian Y (2011) Preparation of LiCoO2 concaved cuboctahedra and their electrochemical behavior in lithium-ion battery. Dalton Trans 40:7645–7650

    CAS  Article  Google Scholar 

  17. Yang W-D, Hsieh C-Y, Chuang H-J, Chen Y-S (2010) Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol–gel method. Ceram Int 36:135–140

    CAS  Article  Google Scholar 

  18. Lala SM, Montoro LA, Lemos V, Abbate M, Rosolen JM (2005) The negative and positive structural effects of Ga doping in the electrochemical performance of LiCoO2. Electrochim Acta 51:7–13

    CAS  Article  Google Scholar 

  19. Mirjalili F, Mohamad H, Abdullah LC (2010) Size-controlled synthesis of nano a-alumina particles through the sol–gel method. Ceram Int 36:1253–1257

    CAS  Article  Google Scholar 

  20. Zhu X, Shang K, Jiang X, Ai X, Yang H, Cao Y (2014) Enhanced electrochemical performance of mg-doped LiCoO2 synthesized by a polymer-pyrolysis method. Ceram Int 40:11245–11249

    CAS  Article  Google Scholar 

  21. Reddy M, Jie TW, Jafta CJ, Ozoemena KI, Mathe MK, Nair AS, Peng SS, Idris MS, Balakrishna G, Ezema FI (2014) Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries. Electrochim Acta 128:192–197

    CAS  Article  Google Scholar 

  22. Myung S-T, Amine K, Sun Y-K (2015) Nanostructured cathode materials for rechargeable lithium batteries. J Power Sources 283:219–236

    CAS  Article  Google Scholar 

  23. Hudak NS, Davis LE, Nagasubramanian G (2015) Cycling-induced changes in the entropy profiles of lithium cobalt oxide electrodes. J Electrochem Soc 162(3):A315–A321

    CAS  Article  Google Scholar 

  24. Yang S, Cui G, Pang S, Cao Q, Kolb U, Feng X, Maier J, Müllen K (2010) Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. ChemSusChem 3:236–239

    CAS  Article  Google Scholar 

  25. Yadegari H, Jabbari A, Heli H (2012) An aqueous rechargeable lithium-ion battery based on LiCoO2 nanoparticles cathode and LiV3O8 nanosheets anode. J Solid State Electrochem 16:227–234

    CAS  Article  Google Scholar 

  26. Tang W, Zhu Y, Hou Y, Liu L, Wu Y, Loh KP, Zhang H, Zhu K (2013) Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ Sci 6:2093–2104

    CAS  Article  Google Scholar 

  27. Wang X, Qu Q, Hou Y, Wang F, Wu Y (2013) An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2. Chem Commun 49:6179–6181

    CAS  Article  Google Scholar 

  28. Wang GJ, Zhang HP, Fu LJ, Wang B, Wu YP (2007) Aqueous rechargeable lithium battery (ARLB) based on LiV3O8 and LiMn2O4 with good cycling performance. Electrochem Commun 9:1873–1876

    CAS  Article  Google Scholar 

  29. Luo J-Y, Cui W-J, He P, Xia Y-Y (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2:760–765

    Article  Google Scholar 

  30. Fan X, Luo J, Shao C, Zhou X-s, Niu Z (2015) Electrochemical performance of microdisc-shaped carbon-coated lithium iron phosphate with preferentially exposed (0 1 0) planes in lithium sulfate aqueous solution. Electrochim Acta 158:342–347

    CAS  Article  Google Scholar 

  31. Ruffo R, Wessells C, Huggins RA, Cui Y (2009) Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochem Commun 11:247–249

    CAS  Article  Google Scholar 

  32. Wang GJ, Zhao NH, Yang LC, Wu YP, Wu HQ, Holze R (2007) Characteristics of an aqueous rechargeable lithium battery (ARLB). Electrochim Acta 52(15):4911–4915

    CAS  Article  Google Scholar 

  33. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    CAS  Article  Google Scholar 

  34. Needham S, Wang G, Liu H, Drozd V, Liu R (2007) Synthesis and electrochemical performance of doped LiCoO2 materials. J Power Sources 174:828–831

    CAS  Article  Google Scholar 

  35. Manjunatha H, Venkatesha TV, Suresh GS (2012) Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium–ion battery electrode. J Solid State Electrochem 16:1941–1952

    CAS  Article  Google Scholar 

  36. Wu B, Yufit V, Merla Y, Martinez-Botas RF, Brandon NP, Offer GJ (2015) Differential thermal voltammetry for tracking of degradation in lithium-ion batteries. J Power Sources 273:495–501

    CAS  Article  Google Scholar 

Download references

Acknowledgements

N.A.A. Aziz would like to thank the Ministry of Higher Education and the Polytechnic for the study leave. The authors would also like to thank MOSTI for their financial support for this project via the Science Fund Grant (03-01-05-SF0621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Azmin Mohamad.

Electronic supplementary material

ESM 1

(DOC 3925 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdul Aziz, N.A., Abdullah, T.K. & Mohamad, A.A. Synthesis of LiCoO2 via sol-gel method for aqueous rechargeable lithium batteries. Ionics 24, 403–412 (2018). https://doi.org/10.1007/s11581-017-2225-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2225-4

Keywords

  • LiCoO2
  • Stirring times
  • Sol-gel
  • Aqueous electrolyte
  • Lithium batteries