Skip to main content
Log in

Synthesis and characterization of Sr2Fe1.4Ni0.1Mo0.5-xNbxO6-δ (x = 0, 0.05, 0.1, and 0.15) cathodes for solid oxide fuel cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nb modified Sr2Fe1.4Ni0.1Mo0.5-xNbxO6-δ (SFNi0.1MNbx, x = 0, 0.05, 0.1, and 0.15) materials are synthesized by the one-step combustion method, and their characteristics are investigated. According to the X-ray diffraction (XRD), all samples present single perovskite structures and scanning electron microscope (SEM) results indicate that all samples possess uniform porous structures. Additionally, the electrode conductivity is improved by doping Nb on the B′ site of SFNi0.1M. From the X-ray photoelectron spectroscopy (XPS) results, the ratios of Fe2+/Fe3+ and Mo6+/Mo5+ vary with the Nb content, which leads to the conductivity change of SFNi0.1MNbx materials. For all the samples, SFNi0.1MNb0.05 exhibits the best electrochemical performance with the lowest polarization resistance of 0.11 Ω cm2 and the highest power density of 1260 mW cm−2 800 °C in humidified H2. The results indicate that SFNi0.1MNbx is a promising type of candidate cathode for solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhan Z, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847

    Article  CAS  Google Scholar 

  2. Zhou Q, He T, Ji Y (2008) SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. J Power Sources 185(2):754–758

    Article  CAS  Google Scholar 

  3. Zhou W, Ran R, Shao Z, Jin W, Xu N (2008) Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ (x>0) perovskite as a solid-oxide fuel cell cathode. J Power Sources 182(1):24–31

    Article  CAS  Google Scholar 

  4. Jiang SP, Zhang L, Zhang Y (2007) Lanthanum strontium manganese chromite cathode and anode synthesized by gel-casting for solid oxide fuel cells. J Mater Chem 17(25):2627

    Article  CAS  Google Scholar 

  5. El-Himri A, Marrero-López D, Ruiz-Morales JC, Peña-Martínez J, Núñez P (2009) Structural and electrochemical characterisation of Pr0.7Ca0.3Cr1−yMnyO3−δ as symmetrical solid oxide fuel cell electrodes. J Power Sources 188(1):230–237

    Article  CAS  Google Scholar 

  6. Yoon H, Zou J, Chung JS (2012) Electrochemical characterization of lanthanum calcium titanium manganite as potential dual electrode material in symmetrical solid oxide fuel cell. Electrochem Soc 2:192

    Google Scholar 

  7. Zheng Y, Zhang C, Ran R, Cai R, Shao Z, Farrusseng D (2009) A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode. Acta Mater 57(4):1165–1175

    Article  CAS  Google Scholar 

  8. Jiang Y, Zhang SWY, Li JYW (1998) Kinetic study of the formation of oxygen vacancy on lanthanum manganite electrodes. J Electrochem Soc 145:373

    Article  CAS  Google Scholar 

  9. Xia C, Chen WRF, Liu M (2002) Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics 149:11

    Article  CAS  Google Scholar 

  10. Xie Z, Zhao H, Chen T, Zhou X, Du Z (2011) Synthesis and electrical properties of Al-doped Sr2MgMoO6-δ as an anode material for solid oxide fuel cells. Int J Hydrog Energy 36(12):7257–7264

    Article  CAS  Google Scholar 

  11. Goodenough JB, Huang Y-H (2007) Alternative anode materials for solid oxide fuel cells. J Power Sources 173(1):1–10

    Article  CAS  Google Scholar 

  12. Kan H, Lee H (2010) Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel. Catal Commun 12(1):36–39

    Article  CAS  Google Scholar 

  13. Zha S, Cheng Z, Liu M (2005) A sulfur-tolerant anode material for SOFCs. Electrochem Solid-State Lett 8(8):A406

    Article  CAS  Google Scholar 

  14. Xiao G, Liu Q, Zhao F, Zhang L, Xia C, Chen FL (2011) Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte. J Electrochem Soc 158(5):B455

    Article  CAS  Google Scholar 

  15. Liu Q, Bugaris DE, Xiao G, Chmara M, Ma S, zur Loye H-C, Amiridis MD, Chen FL (2011) Sr2Fe1.5Mo0.5O6−δ as a regenerative anode for solid oxide fuel cells. J Power Sources 196(22):9148–9153

    Article  CAS  Google Scholar 

  16. Liu Q, Dong X, Xiao G, Zhao F, Chen FL (2010) A novel electrode material for symmetrical SOFCs. Adv Mater 22(48):5478–5482

    Article  CAS  Google Scholar 

  17. Wang Y, Li P, Li H, Zhao Y, Li Y (2014) Synthesis and enhanced electrochemical performance of Sm-doped Sr2Fe1.5Mo0.5O6. Fuel Cells 14(6):973–978

    Article  CAS  Google Scholar 

  18. Dai NN, Feng J, Wang ZH, Jiang TZ, Sun W, Qiao JS, Sun KN (2013) Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.4-xNixMo0.5O6−δ (x=0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. J Mater Chem A 1(45):14147

    Article  Google Scholar 

  19. Hou MY, Sun W, Li PF, Feng J, Yang GQ, Qiao JS, Wang ZH, Rooney D, Feng J, Sun KN (2014) Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6−δ for intermediate temperature solid oxide fuel cells. J Power Sources 272:759–765

    Article  CAS  Google Scholar 

  20. Dai NN, Lou ZB, Wang ZH, Liu X, Yan YM, Qiao JS, Jiang T, Sun KN (2013) Synthesis and electrochemical characterization of Sr2Fe1.5Mo0.5O6–Sm0.2Ce0.8O1.9 composite cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 243:766–772

    Article  CAS  Google Scholar 

  21. Feng J, Yang GQ, Dai NN, Wang ZH, Sun W, Rooney D, Qiao JS, Sun KN (2014) Investigation into the effect of Fe-site substitution on the performance of Sr2Fe1.5Mo0.5O6−δ anodes for SOFCs. J Mater Chem A 2:17628–17634

    Article  CAS  Google Scholar 

  22. Zhou X, Sun KN, Gao J, Le S, Zhang N, Wang P (2009) Microstructure and electrochemical characterization of solid oxide fuel cells fabricated by co-tape casting. J Power Sources 191(2):528–533

    Article  CAS  Google Scholar 

  23. Yang GQ, Feng J, Sun W, Dai NN, Hou MY, Hao XM, Qiao JS, Sun KN (2014) The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6−δ (x=1.9–2.0) as intermediate-temperature solid oxide fuel cell cathodes. J Power Sources 268:771–777

    Article  CAS  Google Scholar 

  24. Liu Y, Zha SW, Liu ML (2004) Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD)**. Adv Mater 16:256–260

    Article  Google Scholar 

  25. Sholklapper TZ, Kurokawa H, Jacobson CP, Visco SJ, Jonghe LCD (2007) Nanostructured solid oxide fuel cell electrodes. Nano Lett 7:2136–2141

    Article  CAS  Google Scholar 

  26. Lee KT, Manthiram A (2006) LaSr3Fe3-yCoyO10-δ (0≤y≤1.5) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells. Chem Mater 18:1621–1626

    Article  CAS  Google Scholar 

  27. Li S, Lü Z, Wei B, Huang X, Miao J, Cao G, Zhu R, Su W (2006) A study of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs. J Alloys Compd 426(1–2):408–414

    Article  CAS  Google Scholar 

  28. Li S, Lu Z, Huang X, Wei B, Su W (2007) Electrical and thermal properties of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ perovskite oxides. Solid State Ionics 178(5–6):417–422

    Article  CAS  Google Scholar 

  29. Liu H, Zhu X, Cheng M, Cong Y, Yang W (2011) Novel Mn1.5Co1.5O4 spinel cathodes for intermediate temperature solid oxide fuel cells. Chem Commun 47(8):2378–2380

    Article  CAS  Google Scholar 

  30. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La1-xMxCo1-yFeyO3-δ(M=Sr,Ba,Ca). J Elflrochem Soc 143:2722–2729

    Article  CAS  Google Scholar 

  31. Song Y, Zhong Q, Tan W, Pan C (2014) Effect of cobalt-substitution Sr2Fe1.5-xCoxMo0.5O6-δ for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochim Acta 139:13–20

    Article  CAS  Google Scholar 

  32. Montini T, Bevilacqua M, Fonda E, Casula MF, Lee S, Tavagnacco C, Gorte RJ, Fornasiero P (2009) Relationship between electrical behavior and structural characteristics in Sr-doped LaNi0.6Fe0.4O3-δ mixed oxides. Chem Mater 21:1768–1774

    Article  CAS  Google Scholar 

  33. Rager J, Zipperle M, Sharm A, MacManus-Drisco JL (2004) Oxygen stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO–Fe3O4–MoO3. J Am Ceram Soc 87:1330–1335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21006015, 21376001, 21506012, 20156028) and the Beijing Higher Education Young Elite Teacher Project (YETP1205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kening Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Wang, W., Feng, J. et al. Synthesis and characterization of Sr2Fe1.4Ni0.1Mo0.5-xNbxO6-δ (x = 0, 0.05, 0.1, and 0.15) cathodes for solid oxide fuel cells. Ionics 24, 421–428 (2018). https://doi.org/10.1007/s11581-017-2203-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2203-x

Keywords

Navigation