Skip to main content

Advertisement

Log in

Facile fabrication of selenium (Se) nanowires for enhanced lithium storage in Li-Se battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A cost-effective facile approach has been developed to prepare Se nanowires in anodic aluminum oxide (AAO) nanochannels by a mechanical injection method, which enables injection of molten Se into the AAO template to form nanowires during solidification. The as-synthesized Se nanowires display well crystallized as a single phase with a hexagonal structure. In addition, thermal stability and electrochemical properties of Se nanowires were presented and discussed in detail. It was found that the Se nanowires used as a cathode material of Li-Se battery displayed enhanced chemical reaction processes with lithium ions, with a higher storage capacity of 1425.6 mAh g−1 compared with the capacity of bulk Se cathode with 454 mAh g−1 at a current density of 150 mA g−1. The current method of synthesizing nanowires is feasible for other pure elements and their compounds with relatively lower melting points (<650 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  CAS  Google Scholar 

  2. Mieszawska AJ, Slawinski GW, Zamborini FP (2006) Directing the growth of highly aligned gold nanorods through a surface chemical amidation reaction. J Am Chem Soc 128:5622–5623

    Article  CAS  Google Scholar 

  3. Whitesides GM, Grzybowski BA (2006) Self-assembly at all scales. Science 295:2418–2421

    Article  Google Scholar 

  4. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949

    Article  CAS  Google Scholar 

  5. Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245

    Article  CAS  Google Scholar 

  6. Zhong Y, Yang M, Zhou X (2015) Structural design for anodes of lithium-ion batteries: emerging horizons from materials to electrodes. Mater Horiz 2:553–566

    Article  CAS  Google Scholar 

  7. Chung SW, Yu JY, Health JR (2000) Silicon nanowire devices. Appl Phys Lett 76:2068–2070

  8. Xia Y, Yang P, Sun Y (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 34:353–389

    Article  Google Scholar 

  9. Mayers B, Gates B, Yin YD, Xia YN (2001) Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process. Adv Mater 13:1380–1384

    Article  CAS  Google Scholar 

  10. Feng X, Hangarter C, Yoo B (2008) Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Acta Electrochim 53:8103–8117

    Article  Google Scholar 

  11. Chen CC, Fang D, Luo Z (2012) Fabrication and characterization of highly-ordered valve-metal oxide nanotubes and their derivative nanostructures. Rev Nanosci Nanotechnol 1:229–256

    Article  CAS  Google Scholar 

  12. Zhang J, Cao Y, Qiang G (2013) Template-assisted nanostructure fabrication by glancing angle deposition: a molecular dynamics study. Nanoscale Res Lett 8:3490–3496

    Google Scholar 

  13. Rambo CR, Recouvreux DOS, Carminatti CA (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554

    Article  CAS  Google Scholar 

  14. Liu C, Ma D, Ji X (2011) Surfactant assisted synthesis of lamellar nanostructured LiFePO4 at 388 K. Appl Surf Sci 257:4529–4531

    Article  CAS  Google Scholar 

  15. Yan C, Xue D, Zou L (2011) A solution-phase approach to the chemical synthesis of ZnO nanostructures via a low-temperature route. J Alloys Compd 453:87–92

    Article  Google Scholar 

  16. Abdullah QN, Yam FK, Hassan JJ (2013) High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique. Int J Hydrog Energy 38:14085–14101

    Article  CAS  Google Scholar 

  17. Battiston AA, Bitter JH (2003) Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3. J Catal 213:251–271

    Article  CAS  Google Scholar 

  18. Song Y, Wang Y, Li BB (2013) Interface interaction induced ultra-dense nanoparticles assemblies. Nano 5:6779–6789

    CAS  Google Scholar 

  19. Li LC, Fang D, Li GZ, Liu RN, Liu SQ, Xu WL (2016) Mechanism and influence factors of valve-metal oxide nanotube arrays prepared by anodization process. Prog Chem 589-606

  20. Mei X, Kim D, Ruda HE (2002) Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks. Appl Phys Lett 81:361–363

    Article  CAS  Google Scholar 

  21. Musselman KP, Mulholl GJ, Robinson AP (2008) Low-temperature synthesis of large-area, free-standing nanorod arrays on ITO/glass and other conducting substrates. Adv Mater 20:4470–4475

    Article  CAS  Google Scholar 

  22. Rajalakshmi M, Arora AK (1999) Optical properties of selenium nanoparticles dispersed in polymer. Solid State Commun 110:75–80

    Article  CAS  Google Scholar 

  23. Peng X, Manna L, Yang W (2006) Shape control of CdSe nanocrystals. Nature 404:59–61

    Google Scholar 

  24. Zu L, Norris DJ, Kennedy TA (2006) Impact of ripening on manganese-doped ZnSe nanocrystals. Nano Lett 6:334–340

    Article  CAS  Google Scholar 

  25. Gates B, Mayers B, Wu Y (2006) Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature. Adv Funct Mater 12:679–686

    Article  Google Scholar 

  26. Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine KA (2012) New class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J Am Chem Soc 134:4505–4508

    Article  CAS  Google Scholar 

  27. Han K, Liu Z, Ye H, Dai F (2014) Flexible self-standing grapheme-Se@CNT composite film as a binder-free cathode for rechargeable li-se batteries. J Power Sources 263:85–89

    Article  CAS  Google Scholar 

  28. Luo C, Xu Y, Zhu Y, Liu Y, Zheng S, Liu Y, Langrock A, Wang C (2013) Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 7:8003–8010

    Article  CAS  Google Scholar 

  29. Liu LL, Hou YY, Wu XW, Xiao SY, Chang Z, Yang YQ, Wu YP (2013) Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries. Chem Commun 49:11515–11517

    Article  CAS  Google Scholar 

  30. Jiang S, Zhang Z, Lai Y, Qu Y, Wang X, Li J (2014) Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium-selenium batteries with high rate performance and cycling stability. J Power Sources 267:394–404

    Article  CAS  Google Scholar 

  31. Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG (2013) An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew Chem Int Ed 52:8363–8367

    Article  CAS  Google Scholar 

  32. Liu L, Hou Y, Yang Y, Li M, Wang X, Wu Y (2014) A Se/C composite as cathode material for rechargeable lithium batteries with good electrochemical performance. RSC Adv 4:9086–9091

    Article  CAS  Google Scholar 

  33. Zhang X, Wang W, Wang A (2014) Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery. J Mater Chem a 2:11660–11665

    Article  CAS  Google Scholar 

  34. Zhang ZA, Zhang ZY, Zhang K, Yang X, Li Q (2014) Improvement of electrochemical performance of rechargeable lithium-selenium batteries by inserting a free-standing carbon interlayer. RSC Adv 4:15489–15492

    Article  CAS  Google Scholar 

  35. Kundu D, Krumeich F, Nesper R (2013) Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. J Power Sources 236:112–117

    Article  CAS  Google Scholar 

  36. Zhang SY, Zhang J, Wang HY (2004) Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater Lett 58:2590–2594

    Article  CAS  Google Scholar 

  37. Jiang ZY, Xie ZX, Xie SY (2003) High purity trigonal selenium nanorods growth via laser ablation under controlled temperature. Chem Phys Lett 368:425–429

    Article  CAS  Google Scholar 

  38. Gates B, Mayers B, Grossman A (2002) A Sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv Mater 14:1749–1752

    Article  CAS  Google Scholar 

  39. Lu Q, Gao F, Komarneni S (2006) Cellulose-directed growth of selenium nanobelts in solution. Chem Mater 18:159–163

    Article  CAS  Google Scholar 

  40. Cao XB, Xie Y, Zhang SY (2014) Ultra-thin trigonal selenium nanoribbons developed from series-wound beads. Adv Mater 16:649–653

    Article  Google Scholar 

  41. Fang D, Li L, Xu W (2016) High capacity lithium ion battery anodes using Sn nanowires encapsulated Al2O3 tubes in carbon matrix. Adv Mater Interfaces 3:243–244

    Article  Google Scholar 

  42. Seah MP (2010) Ultrathin SiO2 on Si. VI. Evaluation of uncertainties in thickness measurement using XPS. Surf Interface Anal 37:300–309

    Article  Google Scholar 

  43. Zhang J, Fan L, Zhu Y (2014) Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li-Se batteries with high performance. Nano 6:12952–12957

    CAS  Google Scholar 

  44. Jiang X, Kemal L, Yu A (2007) Silver-induced growth of selenium nanowires in aqueous solution. Mater Lett 61:2584–2588

    Article  CAS  Google Scholar 

  45. Gates B, Yin Y, Xia Y (2001) ChemInform abstract: a solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10–30 nm. Cheminf 32:12582–12583

    Google Scholar 

  46. Li XM, Li Y, Li SQ (2005) Single crystalline trigonal selenium nanotubes and nanowires synthesized by sonochemical process. Cryst Growth Des 5:911–916

    Article  CAS  Google Scholar 

  47. Song JM, Zhu AJH, Yu SH (2006) Crystallization and shape evolution of single crystalline selenium nanorods at liquid-liquid Interface: from monodisperse amorphous Se nanospheres toward Se nanorods. J Phys Chem B 110:23790–23795

    Article  CAS  Google Scholar 

  48. Luo Z (2016) A practical guide to transmission electron microscopy, volume I: fundamentals. Momentum Press, New York, p 6

    Google Scholar 

  49. Ray C, Dutta S, Sarkar S (2013) A facile synthesis of 1D nano structured selenium and Au decorated nano selenium: catalysts for the clock reaction. RSC Adv 3:24313–24320

    Article  CAS  Google Scholar 

  50. Ge XL, Wang XD (2009) Calculations of freezing point depression, boiling point elevation, vapor pressure and enthalpies of vaporization of electrolyte solutions by a modified three-characteristic parameter correlation model. J Solut Chem 38:1097–1117

    Article  CAS  Google Scholar 

  51. Wautelet M, Duvivier D (2007) The characteristic dimensions of the nanoworld. Eur J Phys 28:953–959

    Article  CAS  Google Scholar 

  52. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc rev 35:583–592

    Article  CAS  Google Scholar 

  53. Fernando D, Nigro TAE, Dyer ID (2016) Synthesis and catalytic activity of the metastable phase of gold phosphide. J Solid State Chem 242:182–192

    Article  CAS  Google Scholar 

  54. Cui Y, Abouimrane A, Lu J, Bolin T (2013) (De)lithiation mechanism of Li/SeSx (x = 0–7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J Am Chem Soc 135:8047–8056

    Article  CAS  Google Scholar 

  55. Bao W, Zhang Z, Zhou C (2014) Multi-walled carbon nanotubes@mesoporous carbon hybrid nanocomposites from carbonized multi-walled carbon nanotubes@metal-organic framework for lithium sulfur battery. J Power Sources 248:570–576

    Article  CAS  Google Scholar 

  56. Lai Y, Yang F, Zhang Z (2014) Encapsulation of selenium in porous hollow carbon spheres for advanced lithium-selenium batteries. RSC Adv 4:39312–39315

    Article  CAS  Google Scholar 

  57. Abouimrane A, Dambournet D, Chapman KW (2012) A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J Am Chem Soc 134:4505–4508

    Article  CAS  Google Scholar 

  58. Han K, Liu Z, Shen J (2014) Resonant bonding in crystalline phase-change materials. Adv Funct Mater 25:455–463

    Article  Google Scholar 

  59. Zhou X, Gao P, Sun S (2015) Crystalline and crystalline/amorphous selenium nanowires and their different (de)lithiation mechanisms. Chem Mater 27:6730–6736

    Article  CAS  Google Scholar 

  60. Zhu J, Hu G, Zhang J (2016) Preparation of Sn-Cu-graphene nanocomposites with superior reversible lithium ion storage. Mater Lett 185:565–568

    Article  CAS  Google Scholar 

  61. Yi TF, Mei J, Zhu YR (2015) Li5Cr7Ti6O25 as a novel negative electrode material for lithium-ion batteries. Chem Commun 51:14050–14053

    Article  CAS  Google Scholar 

  62. Tan Z, Sun Z, Wang H (2013) Fabrication of porous Sn-C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries. J Mater Chem A 1:9462–9468

    Article  CAS  Google Scholar 

  63. Chen T, Liu Y, Pan L (2014) Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem A 2:4117–4121

    Article  CAS  Google Scholar 

  64. Ye H, Yin YX, Zhang SF (2014) Advanced Se-C nanocomposites: a bifunctional electrode material for both Li-Se and Li-ion batteries. J Mater Chem A 2:13293–13298

    Article  CAS  Google Scholar 

  65. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium sulfur battery I. Structural change of sulfur cathode during discharge and charge. J Electrochem Soc 150:A796–A799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51201117, 51104121), the Major State Basic Research Development Program (973 Program) (No. 2012CB722701), the Natural Science Foundation of Hubei Province (No. MCF20140123), the Scientific Research Fund of Wuhan Textile University, and the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China (No. 1343-71134001002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Fang or Zhiping Luo.

Electronic supplementary material

Table S1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Hu, Q., Wei, Y. et al. Facile fabrication of selenium (Se) nanowires for enhanced lithium storage in Li-Se battery. Ionics 23, 3571–3579 (2017). https://doi.org/10.1007/s11581-017-2164-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2164-0

Keywords

Navigation