Skip to main content
Log in

Influence of ZnO growth temperature on the performance of dye-sensitized solar cell utilizing TiO2-ZnO composite film photoanode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

TiO2 nanoflower (NF)-ZnO composite films were synthesized by using liquid phase deposition (LPD) and dip coating method. At the lower growth temperature below 50 °C, the morphology of the sample is nanoflower, while at the temperature above 50 °C, the morphological shape of nanoparticle was obtained. The diameter of ZnO nanoparticle decreases 21.0% with the growth temperature. The thickness of the sample increases with growth temperature until the optimum temperature of 50 °C. The absorption of the uncoated dye samples is about the same. The decrease percentage of absorption for the coated dye samples is 15.0%. The dye-sensitized solar cell utilizing the TiO2-ZnO composite synthesized at 30 °C demonstrated the highest photovoltaic performance with η = 0.63 ± 0.02%, J sc = 1.91 ± 0.05 mA cm−2, and V oc = 0.64 ± 0.02 V due to the highest optical absorption, lowest leak current, highest dye loading, smallest bulk resistance (R s), highest recombination resistance (R cr), and longest charge carrier lifetime (τ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  2. Wang M, Huang C, Cao Y, Yu Q, Deng Z, Liu Y, Huang Z (2009) Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J Phys D:Appl Phys 42:155104

    Article  Google Scholar 

  3. Wu K, Yu Y, Shen K, Xia C, Wang D (2013) Effect of ultra-thin ZnO coating layer on the device performance of TiO2 dye sensitized solar cell. Sol Energy 94:195–201

    Article  CAS  Google Scholar 

  4. Pan M, Liu H, Yao Z, Zhong X (2014) Enhanced efficiency of dye-sensitized solar cells by trace amount Ca-doping in TiO2 photoelectrodes. J Nanomat 2015:1–5

    Google Scholar 

  5. Mehmood U, Ahmed S, Hussein IA, Harrabi K (2015) Co-sensitization of TiO2-MWCNTs hybrid anode for efficient dye-sensitized solar cells. Electrochimi Acta 173:607–612

    Article  CAS  Google Scholar 

  6. Roose B, Pathak S, Steiner U (2015) Doping of TiO2 for sensitized solar cells. Chem Soc Rev 44:8326–8349

    Article  CAS  Google Scholar 

  7. Mohan VM, Shimomura M, Murakami K (2012) Improvement in performances of dye-sensitized solar cell with SiO2 coated TiO2 photoelectrode. J Nanosci Nanotech 12:433–438

    Article  CAS  Google Scholar 

  8. Mehmood U, Hussein IA, Harrabi K, Mekki MB, Ahmed S, Tabet N (2015) Hybrid TiO2–multiwall carbon nanotube (MWCNTs) photoanodes for efficient dye sensitized solar cells (DSSCs). Sol Energy Mater Solar Cells 140:174–179

    Article  CAS  Google Scholar 

  9. Kanmani SS, Ramachandran K (2012) Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications. Renew Energy 43:149–156

    Article  CAS  Google Scholar 

  10. Fabregat-santiago F, García-cañadas J, Palomares E, Clifford JN, Haque SA (2004) The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. J Appl Phys 96:6903–6907

    Article  CAS  Google Scholar 

  11. Al-juaid F, Merazga A, Al-baradi A, Abdel-wahab F (2013) Effect of sol–gel ZnO spin-coating on the performance of TiO2-based dye-sensitized solar cell. Sol-State Electron 87:98–103

    Article  CAS  Google Scholar 

  12. Chou C, Chou F, Ding Y, Wu P (2012) The effect of ZnO-coating on the performance of a dye-sensitized solar cell. Sol Energy 86:1435–1442

    Article  CAS  Google Scholar 

  13. Chou CS, Chou FC, Kang JY (2012) Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells. Powder Tech 215:38–45

    Article  Google Scholar 

  14. Cheng C, Amini A, Zhu C, Xu Z, Song H, Wang N (2014) Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci Rep 4:4181–4185

    Article  Google Scholar 

  15. Park NG, Kang MG, Kim KM, Ryu KS, Chang SH, Kim DK, Van de Lagemaat J (2004) Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO2 and TiO2 cores. Langmuir 20:4246–4253

    Article  CAS  Google Scholar 

  16. Wu S, Han H, Tai Q, Zhang J, Chen BL, Xu S, Zhou C (2008) Improvement in dye-sensitized solar cells with a ZnO-coated TiO2 electrode by RF magnetron sputtering. Appl Phys Lett 92:2006–2009

    Google Scholar 

  17. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nature Mater 4:455–459

    Article  CAS  Google Scholar 

  18. Park K, Zhang Q, Garcia BB, Cao G (2011) Effect of annealing temperature on TiO2-ZnO core-shell aggregate photoelectrodes of dye-sensitized solar cells. J Phys Chem C 115:4927–4934

    Article  CAS  Google Scholar 

  19. Al-juaid F, Merazga A (2013) Increasing dye-sensitized solar cell efficiency by ZnO spin-coating of the TiO2 electrode: effect of ZnO amount. Energy Power Engin 5:591–595

    Article  Google Scholar 

  20. Kao MC, Chen HZ, Young SL (2010) Effects of preannealing temperature of ZnO thin films on the performance of dye-sensitized solar cells. Appl Phys A: Mater Sci Proc 98:595–599

    Article  CAS  Google Scholar 

  21. Wang G, Cai Z, Li F, Tan S, Xie S, Li J (2014) 2% ZnO increases the conversion efficiency of TiO2 based dye sensitized solar cells by 12%. J Alloys Comp 583:414–418

    Article  CAS  Google Scholar 

  22. Dhas V, Muduli S, Agarkar S, Rana A, Hannoyer B, Banerjee R, Ogale S (2011) Enhanced DSSC performance with high surface area thin anatase TiO2 nanoleaves. Sol Energy 85:1213–1219

    Article  CAS  Google Scholar 

  23. Chou TP, Zhang QF, Fryxell GE, Cao G (2007) Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater 19:2588–2592

    Article  CAS  Google Scholar 

  24. Li F, Wang G, Jiao Y, Li J, Xie S (2014) Efficiency enhancement of ZnO-based dye-sensitized solar cell by hollow TiO2 nanofibers. J Alloys Comp 611:19–23

    Article  CAS  Google Scholar 

  25. Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S (2006) Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B 110:13872–13880

    Article  CAS  Google Scholar 

  26. Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K (2005) Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys Chem Chem Phys 7:4157–4163

    Article  CAS  Google Scholar 

  27. Huo J, Hu Y, Jiang H, Huang W, Li C (2014) SnO2 nanorod@TiO2 hybrid material for dye-sensitized solar cells. J Mater Chem A 2:8266–8272

    Article  CAS  Google Scholar 

  28. Hosono E, Fujihara S, Honma I, Zhou H (2005) The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells. Adv Mater 17:2091–2094

    Article  CAS  Google Scholar 

  29. Cheng P, Wang Y, Xu L, Sun P, Su Z, Jin F, Liu F (2016) 3D TiO2/ZnO composite nanospheres as excellent electron transport anode for efficient dye-sensitized solar cell. RSC Adv 6:51320–51326

    Article  CAS  Google Scholar 

  30. Wang M, Wang Y, Li J (2011) ZnO nanowire arrays coating on TiO2 nanoparticles as a composite photoanode for a high efficiency DSSC. Chem Comm 47:11246–11248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ministry of Education Malaysia, Ministry of Science, Technology and Innovation Malaysia, and Universiti Kebangsaan Malaysia for the financial support under the research grant of FRGS/2/2013/SG02/UKM/02/5, 03-01-02-SF0836, DLP-2015-003, and GUP-2016-013, respectively. The authors also are grateful to the Centre for Research and Innovation Management (CRIM) UKM for providing the FESEM and EDX facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Y. A. Rahman or A. A. Umar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsuri, S.A.M., Rahman, M.Y.A., Umar, A.A. et al. Influence of ZnO growth temperature on the performance of dye-sensitized solar cell utilizing TiO2-ZnO composite film photoanode. Ionics 23, 3533–3544 (2017). https://doi.org/10.1007/s11581-017-2139-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2139-1

Keywords

Navigation