Skip to main content

Advertisement

Log in

Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An attempt has been made to synthesise a new proton conducting polymer electrolyte using the biopolymer dextrin doped with ammonium thiocyanate salts using solution casting technique. The complexation has been studied using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The differential scanning calorimetry (DSC) thermograms of dextrin with NH4SCN showed that Tg value increases with respect to the increase of NH4SCN concentration. The electrical conductivity was measured using AC impedance analyser which showed that ionic conductivity increases with increase in salt concentration up to 40%. Transference number measurement was carried out to investigate the nature of the charge transport species in the polymer electrolyte. Surface morphology of the electrolytes was determined using scanning electron microscope (SEM) studies, and the chemical composition of the elements present was determined using EDAX. The proton battery was constructed with the highest conducting polymer electrolyte Dex-40%NH4SCN and its open circuit voltage with load were carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chai MN, Isa MIN (2016) Novel proton conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped with oleic acid and plasticized glycerol. Sci Report 6:27328 1-7

    Article  CAS  Google Scholar 

  2. Salleh NS, Shujahadeen Aziz B, Aspanut Z, Kadir MFZ (2016) Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics 22:2157–2167

    Article  CAS  Google Scholar 

  3. Rani MSA, Dzulkurnain NA, Ahmed A, Mohamed NS (2015) Conductivity and dielectric behaviour studies of Carboxymethyl cellulose from Kent Bast fiber incorporated with ammonium acetate-BMATFSI biopolymer electrolytes. Int J Polym Anal Charact 20:250–260

    Article  CAS  Google Scholar 

  4. Azlan AL, Isa MIN (2011) Proton conducting biopolymer electrolytes based on tapioca starch-NH4NO3. Solid State Sci Technol Lett 18(1):124–129

    Google Scholar 

  5. Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP (2015) Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J Power Sources 288:368–375

    Article  CAS  Google Scholar 

  6. Abu Bakar NY, Muhamaruesa NH, Bashirah Aniskari NA, Mohd Isa MIN (2015) Electrical studies of Carboxy Methycellulose –Chitosen blend biopolymer doped Dodecyltrimethyl ammonium bromide solid electrolytes. Am J Appl Sci 12(1):40–46

    Article  Google Scholar 

  7. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 20(7):977–999

    Article  CAS  Google Scholar 

  8. Shanti N, Azlin S, Ahmada AH, Ramesh S, Ramesh K, Othmana N (2015) Conductivity studies of biopolymer electrolyte based on potato starch/chitosan blend doped with LiCF3SO3. Jurnal Technologi 75(7):1–5

    Google Scholar 

  9. Nur UT, Nurul HI (2014) Plastic crystal solid biopolymer electrolytes for rechargeable lithium batteries. J Membr Sci 468:149–154

    Article  Google Scholar 

  10. Mohammad HK, Ramesh S, Ramesh K (2015) Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Sci Report 5:1–7

    Article  Google Scholar 

  11. Ramlli MA, Isa MIN (2016) Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on Carboxymethyl cellulose doped with ammonium fluoride. J Phys Chem B 120(44):11567–11573

    Article  CAS  Google Scholar 

  12. Juliana RA, Ellen R, Agnieszka P (2009) Plasticized pectin based gel electrolytes. Electrochemica Acta 54:6479–6483

    Article  Google Scholar 

  13. Arof AK, Shuhaimi NEA, Alias NA, Majid SR (2010) Application of chitosan/iota-carrageenan polymer electrolytes double layer capacitor. J Solid State Electrochem 4:2145–2152

    Article  Google Scholar 

  14. Lin Y, Jie L, Kathy L, Yexiang L, Jin L, Xuming W (2016) Unique starch polymer electrolyte for high capacity all-solid-state lithium sulphur battery. Green Chem 18(13):3796–3803

    Article  CAS  Google Scholar 

  15. Mobarak NN, Jumaah FN, Ghani MA, Abdullah MP, Ahmad A (2015) Carboxymethyl carrageenan based biopolymer electrolytes. Electrochemica Acta 175:224–231

    Article  CAS  Google Scholar 

  16. Monisha S, Selvasekarapandian S, Mathavan T, Benial MF, Manoharan S, Karthikeyan S (2016) Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J Mater Sci Mater Electron 27(9):9314–9324

    Article  CAS  Google Scholar 

  17. Chatterjee B, Kulshrestha N, Gupta PN (2015) Preparation and characterization of lithium ion conducting solid polymer electrolytes from biodegradable polymers starch and PVA. Int J Eng Res Appl 5(6):116–131

    Google Scholar 

  18. Stephen AM, Phillips GO, Williams PA (2006) Food polysaccharides and their applications. CRC Press, 92–99

  19. What are Dextrins? Wise geek

  20. Hiran Kumar G, Selvasekara Pandian S, Nithya H, Sakunthala A, Arun Kumar D (2005) Thermal, electrical and optical studies on the poly(vinyl alcohol)based polymer electrolytes. J Power Sources 144:262–267

    Article  CAS  Google Scholar 

  21. Hema M, Selvasekarapandian S, Nithya H, Sakunthala A, Arunkumar D (2009) Thermal, electrical and optical studies on the poly(vinyl alcohol) based polymer electrolytes. Ionics 15(4):487–491

    Article  CAS  Google Scholar 

  22. Vijaya N, Selvasekarapandian S, Hirankumar G, Karthikeyan S, Nithya H, Ramya CS, Prabu M (2012) Structural, vibrational, thermal, and conductivity studies on proton-conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Ionics 18:91–99

    Article  CAS  Google Scholar 

  23. Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkinthar S, Sanjeeviraja C (2014) AC impedance studies on proton-conducting PAN:NH4SCN polymer electrolytes. Ionics 20:1391–1398

    Article  CAS  Google Scholar 

  24. Vijaya N, Selvasekarapandian S, Karthikeyan S, Prabu M, Rajeswari N, Sanjeeviraja C (2013) Synthesis and characterization of proton conducting polymer electrolyte based on poly(N-vinyl pyrrolidone). J Appl Polym Sci 127(3):1538–1543

    Article  CAS  Google Scholar 

  25. Aji MP, Masturi, Bijaksana S, Khairurrijal, Abdullah M (2012) A general formula for ion concentration dependent electrical conductivities in polymer electrolytes. J Appl Sci 9(6):946–954

    Article  CAS  Google Scholar 

  26. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177(26):2679–2682

    Article  CAS  Google Scholar 

  27. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  28. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  29. De Santana H, Pelisson L, Janiaski DR, Zaia CTBV, Dimas AM, Zaia J (2010) UV radiation and the reaction between ammonium and thiocyanate under prebiotic chemistry conditions. Serb Chem Soc 75(10):1381–1389

    Article  CAS  Google Scholar 

  30. Awadhia A, Agrawal SL (2007) Structural, thermal and electrical characterizations of PVA:DMSO:NH4SCN gel electrolytes. Solid State Ionics 178:951–958

    Article  CAS  Google Scholar 

  31. Hamit Erdemi Anhydrous proton conducting polymer electrolytes based on polymeric liquids, pubman.mpdl.mpg.de/pubman/item/escidoc%3A1424011/component/

  32. Zhang H, Xuan X, Wang J, Wamg H (2003) FT-IR investigation of ion association in PEO–MSCN (M = Na, K) polymer electrolytes. Solid State Ionics 164:73–79

    Article  CAS  Google Scholar 

  33. Pottier A (1992) The hydrogen bond and chemical parameters favoring proton mobility in solid, in proton conductors: solid, electrolytes and gel materials and devices. Cambridge University Press, Cambridge

    Google Scholar 

  34. Norby T (1999) Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 125:1–11

    Article  CAS  Google Scholar 

  35. Stuar BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Colorado

    Book  Google Scholar 

  36. Sikkanthar S, Karthikeyan S, Selvasekara Pandian S, Vinoth Pandi D, Nithya S, Sanjeeviraja C (2015) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem 19(4):987–999

    Article  CAS  Google Scholar 

  37. Radha KP, Selvasekarapandian S, Karthikeyan S, Hema M, Sanjeeviraja C (2013) Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 19:1437

    Article  CAS  Google Scholar 

  38. Leones R, Botelho MBS, Sentanin F, Cesarino I, Pawlicka A, Camargo ASS, Silva MM (2014) Pectin based polymer electrolytes with Ir(III) complexes. Mol Cryst Liq Cryst 604:117–125

    Article  CAS  Google Scholar 

  39. Angell CA, Xu K, Zhang SS, Videa N (1996) Variations on the saltpolymer electrolyte theme for flexible solid electrolytes. Solid State Ionics 86–88:17–28

    Article  Google Scholar 

  40. Gazotti WA, Spinace MAS, Girotto EM, De Paoli MA (2000) Polymer electrolytes based on ethylene oxide–epichlorohydrin copolymers. Solid State Ionics 130:281–291

    Article  CAS  Google Scholar 

  41. Silva GG, Lemes NHT, Polo da Fonseca CN, De Paoli MA (1997) Solid state polymeric electrolytes based on poly (epichlorohydrin). Solid State Ionics 93:105–116

    Article  Google Scholar 

  42. Macdonald JR (ed) (1987) Impedance Spectroscopy. Wiley, New York

    Google Scholar 

  43. Boukamp BA (1986) A non linear least squares fit procedure for analysis of immittance data of electrochemical studies. Solid State Ionics 20:31–44

  44. Boukamp BA (1986) A package of impedance admittance data-analysis. Solid State Ionics 18&19:136–140

  45. Nithya H, Selvasekarapandian S, ChristopherSelvin P, ArunKumar D, Hemaa M, Prakash D (2011) Characterization of nanocomposite polymer electrolyte based on P(ECH-EO). Phys B 406:3367–3373

    Article  CAS  Google Scholar 

  46. Kim SH, Kim JY, Kim HS, Cho HN (1999) Ionic conductivity of polymer electrolytes based on phosphate and polyether copolymers. Solid State Ionics 116:63–71

    Article  CAS  Google Scholar 

  47. Premalatha M, Vijaya N, Selvasekarapandian S, Selvalakshmi S (2016) Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22:1299–1310

    Article  CAS  Google Scholar 

  48. Kim C, Lee G, Leo K, Ryu KS, Chang SH (1999) Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly(acrylonitrile), and lithium triflate. Solid State Ionics 123:251–257

    Article  CAS  Google Scholar 

  49. Jonscher AK (1977) The universal dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  50. Wagner JB, Wagner CJ (1957) Electrical conductivity measurements on cuprous halides. Chem Rev 26:1597

    CAS  Google Scholar 

  51. Winnie T, Arof AK (2006) Transport properties of hexanoyl chitosan based gel electrolyte. Ionics 12:149–152

    Article  Google Scholar 

  52. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinoth Pandi D (2017) Investigation of biopolymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47

    Article  CAS  Google Scholar 

  53. Chandra S (ed) (1981) Superionic solids—principles and applications. North Holland, Amsterdam

    Google Scholar 

  54. Singh K, Tiwari RU, Deshpande VK (1993) Performance of a solid state battery with a proton-conducting electrolyte. J Power Sources 1:65–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Electronic supplementary material

.

ESM 1

(DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirmala Devi, G., Chitra, S., Selvasekarapandian, S. et al. Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices. Ionics 23, 3377–3388 (2017). https://doi.org/10.1007/s11581-017-2135-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2135-5

Keywords

Navigation