Skip to main content

Excellent long-term electrochemical performance of graphite oxide as cathode materials for lithium-ion batteries

Abstract

A facile, scalable route has been adopted to synthesize graphite oxides with different degrees of oxidation. Subsequently, graphite oxides with rationally designed functional groups have been utilized as cathode materials for lithium-ion batteries (LIBs). The electrodes deliver the initial and second discharge capacities of 332 and 172 mAh g−1 at a current density of 0.1 A g−1, respectively. More importantly, a remarkable long-term cycling performance of 130 mAh g−1 after 800 cycles has been gathered, with an ultralow capacity fading of 0.03% per cycle from the second cycle. The root cause of excellent cycling stability should be ascribed to the admirable reversibility of epoxy and carbonyl groups in graphite oxides during the Li-cycling. Meanwhile, the deep study has provided a novel way to avoid complex and expensive post-treatment process of graphite oxides, whose synthesis conditions are also optimized. Those striking features make graphite oxides as promising cathode materials for lithium-ion batteries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ai W, Du ZZ, Fan ZX, Jiang J, Wang YL, Zhang H, Xie LH, Huang W, Yu T (2014) Chemically engineered graphene oxide as high performance cathode materials for Li-ion batteries. Carbon 76:148–154. doi:10.1016/j.carbon.2014.04.061

    CAS  Article  Google Scholar 

  2. Wu Z-S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Muellen K (2012) Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135. doi:10.1002/adma.201201948

    CAS  Article  Google Scholar 

  3. Liu Q, Ohki T, Liu D, Sugawara H, Ishikawa R, Ueno K, Shirai H (2015) Efficient organic/polycrystalline silicon hybrid solar cells. Nano Energy 11:260–266. doi:10.1016/j.nanoen.2014.10.032

    CAS  Article  Google Scholar 

  4. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657. doi:10.1038/451652a

    CAS  Article  Google Scholar 

  5. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954. doi:10.1016/j.jpowsour.2009.08.089

    CAS  Article  Google Scholar 

  6. Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24(37):5045–5064. doi:10.1002/adma.201104502

    CAS  Article  Google Scholar 

  7. Li X, Wang C (2013) Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J Mater Chem A 1(2):165–182. doi:10.1039/c2ta00437b

    CAS  Article  Google Scholar 

  8. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214. doi:10.1021/cr3000412

    CAS  Article  Google Scholar 

  9. Whittingham MS, Song YN, Lutta S, Zavalij PY, Chernova NA (2005) Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J Mater Chem 15(33):3362–3379. doi:10.1039/b501961c

    CAS  Article  Google Scholar 

  10. Hu M, Pang XL, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242. doi:10.1016/j.jpowsour.2013.03.024

    CAS  Article  Google Scholar 

  11. Xiong D, Li X, Shan H, Zhao Y, Dong L, Xu H, Zhang X, Li D, Sun X (2015) Oxygen-containing functional groups enhancing electrochemical performance of porous reduced graphene oxide cathode in lithium ion batteries. Electrochim Acta 174:762–769. doi:10.1016/j.electacta.2015.06.041

    CAS  Article  Google Scholar 

  12. Wu S, Ge R, Lu M, Xu R, Zhang Z (2015) Graphene-based nano-materials for lithium–sulfur battery and sodium-ion battery. Nano Energy 15(0):379–405. doi:10.1016/j.nanoen.2015.04.032

    CAS  Article  Google Scholar 

  13. Ha SH, Jeong YS, Lee YJ (2013) Free standing reduced graphene oxide film cathodes for lithium ion batteries. Acs Appl Mater Inter 5(23):12295–12303. doi:10.1021/am4044147

    CAS  Article  Google Scholar 

  14. Jiang W, Zhao X, Ma Z, Lin J, Lu C (2016) SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries with enhanced cyclability. J Nanosci Nanotechnol 16(4):4136–4140. doi:10.1166/jnn.2016.12541

    CAS  Article  Google Scholar 

  15. Xu N, Liang J, Qian T, Yang T, Yan C (2016) Half-cell and full-cell applications of horizontally aligned reduced oxide graphene/V2O5 sheets as cathodes for high stability lithium-ion batteries. RSC Adv 6(101):98581–98587. doi:10.1039/c6ra24394k

    CAS  Article  Google Scholar 

  16. Wang D-W, Sun C, Zhou G, Li F, Wen L, Donose BC, Lu GQ, Cheng H-M, Gentle IR (2013) The examination of graphene oxide for rechargeable lithium storage as a novel cathode material. J Mater Chem A 1(11):3607. doi:10.1039/c3ta01658g

    CAS  Article  Google Scholar 

  17. Kim H, Lim H-D, Kim S-W, Hong J, Seo D-H, D-c K, Jeon S, Park S, Kang K (2013) Scalable functionalized graphene nano-platelets as tunable cathodes for high-performance lithium rechargeable batteries. Sci Rep 3. doi:10.1038/srep01506

  18. Xiong D, Li X, Shan H, Yan B, Dong L, Cao Y, Li D (2015) Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries. J Mater Chem A 3(21):11376–11386. doi:10.1039/c5ta01574j

    CAS  Article  Google Scholar 

  19. Xiong D, Li X, Shan H, Yan B, Li D, Langford C, Sun X (2016) Scalable synthesis of functionalized graphene as cathodes in Li-ion electrochemical energy storage devices. ApEn 175:512–521. doi:10.1016/j.apenergy.2016.03.105

    CAS  Google Scholar 

  20. Hummers BW, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. doi:10.1021/acs.jpclett.5b00927

    CAS  Article  Google Scholar 

  21. Lerf A, He HY, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482. doi:10.1021/jp9731821

    CAS  Article  Google Scholar 

  22. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240. doi:10.1039/b917103g

    CAS  Article  Google Scholar 

  23. Hamwi A, Marchand V (1996) Some chemical and electrochemical properties of graphite oxide. J Phys Chem Solids 57(6–8):867–872. doi:10.1016/0022-3697(96)00364-2

    CAS  Article  Google Scholar 

  24. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49. doi:10.1016/j.carbon.2012.10.013

    CAS  Article  Google Scholar 

  25. Krishnamoorthy K, Navaneethaiyer U, Mohan R, Lee J, Kim S-J (2011) Graphene oxide nanostructures modified multifunctional cotton fabrics. Appl Nanosci 2(2):119–126. doi:10.1007/s13204-011-0045-9

    Article  Google Scholar 

  26. Kakaei K, Hasanpour K (2014) Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J Mater Chem A 2(37):15428–15436. doi:10.1039/c4ta03026e

    CAS  Article  Google Scholar 

  27. Livneh T, Haslett TL, Moskovits M (2002) Distinguishing disorder-induced bands from allowed Raman bands in graphite. Phys Rev B 66(19). doi:10.1103/PhysRevB.66.195110

  28. Wang H, Hu YH (2011) Effect of oxygen content on structures of graphite oxides. Ind Eng Chem Res 50(10):6132–6137. doi:10.1021/ie102572q

    CAS  Article  Google Scholar 

  29. Dhakate SR, Chauhan N, Sharma S, Tawale J, Singh S, Sahare PD, Mathur RB (2011) An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon 49(6):1946–1954. doi:10.1016/j.carbon.2010.12.068

    CAS  Article  Google Scholar 

  30. Ai W, Liu J-Q, Du Z-Z, Liu X-X, Shang J-Z, Yi M-D, Xie L-H, Zhang J-J, Lin H-F, Yu T, Huang W (2013) One-pot, aqueous-phase synthesis of graphene oxide functionalized with heterocyclic groups to give increased solubility in organic solvents. RSC Adv 3(1):45–49. doi:10.1039/c2ra22009a

    CAS  Article  Google Scholar 

  31. Zhao G, Shao D, Chen C, Wang X (2011) Synthesis of few-layered graphene by H2O2 plasma etching of graphite. Appl Phys Lett 98(18). doi:10.1063/1.3589354

  32. Jang BZ, Liu C, Neff D, Yu Z, Wang MC, Xiong W, Zhamu A (2011) Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices. Nano Lett 11(9):3785–3791. doi:10.1021/nl2018492

    CAS  Article  Google Scholar 

  33. Guo J, Cai Y, Zhang S, Chen S, Zhang F (2016) Core-shell structured o-LiMnO2@Li2CO3 nanosheet array cathode for high-performance, wide-temperature-tolerance lithium-ion batteries. Acs Appl Mat Inter 8(25):16116–16124. doi:10.1021/acsami.6b04616

    CAS  Article  Google Scholar 

  34. Gao D, Zhang Z (2013) Synthesis and electrochemical performance of graphite oxide as cathode material for rechargeable batteries. Mater Sci Forum 743-744:8–12. doi:10.4028/www.scientific.net/MSF.743-744.8

    Article  Google Scholar 

  35. Le Gall T, Reiman KH, Grossel MC, Owen JR (2003) Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries. J Power Sources 119:316–320. doi:10.1016/s0378-7753(03)00167-8

    Article  Google Scholar 

  36. Han X, Chang C, Yuan L, Sun T, Sun J (2007) Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv Mater 19(12):1616–1621. doi:10.1002/adma.200602584

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Science and Technology of Guangdong (No. 2015B090901030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhang.

Electronic supplementary material

ESM 1

Electronic Supplementary Information (ESI) available: Synthesis of graphite oxides; Table S1: Orthogonal Latin square experimental arrangement; Table S2: The weight losses of GO samples in different temperature ranges (wt.%); Table S3: Discharge capacity of the synthesized graphite oxides at 0.1 A g-1. (DOC 40 kb).

The online version of this article contains supplementary material, which is available to authorized users.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Zhang, Z., Liu, Z. et al. Excellent long-term electrochemical performance of graphite oxide as cathode materials for lithium-ion batteries. Ionics 23, 3023–3029 (2017). https://doi.org/10.1007/s11581-017-2096-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2096-8

Keywords

  • Graphite oxide
  • Oxygen-containing functional groups
  • Lithium-ion battery
  • Cathode material