Skip to main content

Effect of growing temperature on structure and electrochemical performance of ZnMn2O4 nanospheres

Abstract

In this paper, we demonstrate the effects of growing temperature of ZnMn2O4 on structural and electrochemical performance. ZnMn2O4 nanostructured materials were prepared at different temperatures from 140 to 200 °C by hydrothermal method. The synthesized ZnMn2O4 samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectroscope (EDS), and Brunauer-Emmett-Teller (BET) specific surface area. The electrochemical performances of ZnMn2O4 grown on various substrates were investigated in details. The results show that the synthesized ZnMn2O4 samples grown on FTO (A SnO2:F thin film deposited on transparent glass) and nickel foam at 140 °C with nanospheres structure, high specific surface area, and mesoporous structure exhibit excellent supercapacitor performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Tang YF, Chen T, Yu SX, Qiao YQ, Mu SC, Zhang SH, Zhao YF, Hou L, Huang WW, Gao FM (2015) A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance. J Power Sources 295:314–322

    CAS  Article  Google Scholar 

  2. 2.

    Guo N, Wei XQ, Zhao RR, Xu XJ (2014) Preparation and optical properties of mg-doped ZnO nanorods. Appl Surf Sci 317:400–404

    CAS  Article  Google Scholar 

  3. 3.

    Zhang X, Luo JS, Tang PY, Ye XL, Peng XX, Tang HL, Sun SG, Fransaer J (2017) A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading. Nano Energy 31:311–321

    CAS  Article  Google Scholar 

  4. 4.

    Chen JP, Sorensen CM (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296

    CAS  Article  Google Scholar 

  5. 5.

    Ding DW, Long M, Cai WM, Wu YH, Wu DY, Chen C (2009) In situ synthesis of photocatalytic CuAl2O4-cu hybrid nanorod arrays. Chem Commun 24:3588–3590

    Article  Google Scholar 

  6. 6.

    Sahoo A, Sharma Y (2015) Synthesis and characterization of nanostructured ternary zinc manganese oxide as novel supercapacitor material. Mater Chem Phys 149-150:721–727

    CAS  Article  Google Scholar 

  7. 7.

    Yang Y, Zhao Y, Xiao L, Zhang L (2008) Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochem Commun 10:1117

    CAS  Article  Google Scholar 

  8. 8.

    Courtel F, Duncan H, Abu-Lebdeh Y, Davidson I (2011) High capacity anode materials for li-ion batteries based on spinel metal oxides AMn2O4 (a = co, Ni, and Zn). J Mater Chem 21:10206

    CAS  Article  Google Scholar 

  9. 9.

    Zhou L, Wu HB, Zhu T, Lou XW (2012) Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J Mater Chem 22:827

    CAS  Article  Google Scholar 

  10. 10.

    Huang TF, Zhao CH, Qiu ZH, Luo JS, Hu ZB (2017) Hierarchical porous ZnMn2O4 synthesized by the sucrose-assisted combustion method for high-rate supercapacitors. Ionics 23:139–146

    CAS  Article  Google Scholar 

  11. 11.

    Zhao L, Li XY, Zhao J (2013) Fabrication, characterization and photocatalytic activity of cubic-like ZnMn2O4. Appl Surf Sci 268:274–277

    CAS  Article  Google Scholar 

  12. 12.

    Wang NN, Ma XJ, Xu HY, Chen L, Yue J, Niu FE, Yang J, Qian YT (2014) Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 6:193–199

    CAS  Article  Google Scholar 

  13. 13.

    Zhang GQ, Yu L, Wu HB, Hoster HE, Lou XW (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24:4609

    CAS  Article  Google Scholar 

  14. 14.

    Chen XQ, Zhang YM, Lin HB, Xia P, Cai X, Li XG, Li XP, Li WS (2016) Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. J Power Sources 312:137

    CAS  Article  Google Scholar 

  15. 15.

    Gherbia R, Bessekhouad Y, Trari M (2016) Structure, optical and transport properties of mg-doped ZnMn2O4. J Alloys Compd 655:188

    Article  Google Scholar 

  16. 16.

    Gherbia R, Bessekhouad Y, Trari M (2016) Optical and transport properties of Sn-doped ZnMn2O4 prepared by sol–gel method. J Phys Chem Solids 89:69

    Article  Google Scholar 

  17. 17.

    Li F, Xu J, Yu X, Chen L, Zhu J, Yang Z, Xin X (2002) One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors Actuators B Chem 81:165–169

    CAS  Article  Google Scholar 

  18. 18.

    Wang CC, Ying JY (1999) Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11:3113–3120

    CAS  Article  Google Scholar 

  19. 19.

    Wei B, Subramanian V, Zhu H (2006) Nanostructured MnO2: hydrothermal synthesis and electrochemical peroperties asa supercapacitor electrode material. J Power Sources 159:361–364

    Article  Google Scholar 

  20. 20.

    Guo N, Wei XQ, Deng XL, Xu XJ (2015) Synthesis and property of spinel porous ZnMn2O4 microspheres. Appl Surf Sci 356:1127–1134

    CAS  Article  Google Scholar 

  21. 21.

    Barth S, Hernandez-Ramirez F, Holmes JD, Romano-Rodriguez A (2010) Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci 55:563–627

    CAS  Article  Google Scholar 

  22. 22.

    Pan Z, Li X, Zhao Q, Liu S (2011) Synthesis and optical property of onedimensional spinel ZnMn2O4 nanorods. Nanoscale Res Lett 6:323

    Article  Google Scholar 

  23. 23.

    Ding Y, Yang YF, Shao HX (2011) High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim Acta 56:9433

    CAS  Article  Google Scholar 

  24. 24.

    Teh PF, Sharma Y, Pramana SS, Srinivasan M (2011) Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J Mater Chem 21:14999

    CAS  Article  Google Scholar 

  25. 25.

    Song WT, Xie J, Liu SY, Cao GS, Zhu TJ, Zhao XB (2012) Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for li-ion batteries. New J Chem 36:2236

    CAS  Article  Google Scholar 

  26. 26.

    Sui J, Zhang C, Hong D, Li J, Cheng Q, Li ZG, Cai W (2012) Facile synthesis of MWCNT–ZnFe2O4 nanocomposites as anode materials for lithium ion batteries. Journal of M H aterials Chemistry 22:13674

    CAS  Article  Google Scholar 

  27. 27.

    Sangmanee M, Maensiri S (2009) Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl Phys A Mater Sci Process 97:167

    CAS  Article  Google Scholar 

  28. 28.

    Vidal-Abarca C, Lavela P, Tirado JL (2010) On the role of faradaic and capacitive contributions in the electrochemical performance of CoFe2O4 as conversion anode for li-ion cells. Solid State Ionics 181:616

    CAS  Article  Google Scholar 

  29. 29.

    Bai ZC, Fan N, Sun CH, Ju ZC, Guo CL, Yang J, Qian YT (2013) Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in li-ion batteries. Nano 5:2442

    CAS  Google Scholar 

  30. 30.

    Zhao RR, Wei XQ, Wang YJ, Xu XJ (2013) Annealing effects on structural andoptical properties of ZnMgO films grown by RF magnetron sputtering. J Mater Sci Mater Electron 24:4290

    CAS  Article  Google Scholar 

  31. 31.

    Zhao RR, Wei XQ, Ding M, Xu XJ (2014) Fabrication and optical properties of mg-doped ZnO nanorods by chemical vapor deposition. Sci Adv Mater 6:500

    CAS  Article  Google Scholar 

  32. 32.

    Xiao LF, Yang YY, Yin J, Li Q, Zhang LZ (2009) Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J Power Sources 194:1089

    CAS  Article  Google Scholar 

  33. 33.

    Ma LS, Zhao QQ, Zhang Q, Ding M, Huang JZ, Liu XJ, Liu Y, Wu X, Xu XJ (2014) Controlled assembly of Bi2S3 architectures as Schottky diode, supercapacitor electrodes and highly efficient photocatalysts. RSC Adv 4:41636

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by the National Natural Science Foundation of China (Grant No. 11304120), the Shandong Provincial Natural Science Foundation (ZR2013AM008, ZR2009FZ006, ZR2010EL017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. Q. Wei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, X.Q., Wang, Y.L., Guo, N. et al. Effect of growing temperature on structure and electrochemical performance of ZnMn2O4 nanospheres. Ionics 23, 2443–2448 (2017). https://doi.org/10.1007/s11581-017-2082-1

Download citation

Keywords

  • ZnMn2O4
  • Hydrothermal
  • Electrochemical performance