Skip to main content
Log in

Preparation and characterization of proton exchange membranes with through-membrane proton conducting channels

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The primary goal of this study is to develop a novel PEMs with unique surface structure utilizing the high viscosity of the impregnation solution. SiO2 nanofiber mats were prepared via the electrospinning method and introduced into sulfonated poly(ether sulfone) (SPES) matrix to prepare hybrid membrane. The effect of concentration of impregnation solution on the morphology and properties of the proton exchange membranes (PEMs), including thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeability were investigated. SEM results showed that a unique surface structure was prepared due to the high solution concentration. Moreover, the hydrophilic nanofibers on the surface constructed continuous proton pathways, which can enhance the proton conductivity of the membranes, a maximum proton conductivity of 0.125 S/cm was obtained when the SPES concentration was 40 wt% at 80 °C, and the conductivity was improved about 1.95 times compared to that of pure SPES membrane. The SiO2 nanofiber mat-supported hybrid membrane could be used as PEMs for fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park KT, Kim SG, Chun JH et al (2011) Composite membranes based on a sulfonated poly(arylene ether sulfone) and proton-conducting hybrid silica particles for high temperature PEMFCs. Int J Hydrog Energy 36(17):10891–10900

    Article  CAS  Google Scholar 

  2. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238

    Article  CAS  Google Scholar 

  3. Ahmad MI, Zaidi SMJ, Rahman SU (2006) Proton conductivity and characterization of novel composite membranes form edium-temperature fuel cells. Desalination 193:387–397

    Article  CAS  Google Scholar 

  4. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104(10):4587–4612

    Article  CAS  Google Scholar 

  5. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35(17):9349–9384

    Article  CAS  Google Scholar 

  6. DiVona ML, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S (2007) SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process. J Membr Sci 296(1):156–161

    Article  CAS  Google Scholar 

  7. Arigonda M, Deshpande AP, Varughese S (2013) Effect of PES on the morphology and properties of proton conducting blends with sulfonated poly(ether ether ketone). J Appl Polym Sci 127(6):5100–5110

    Article  CAS  Google Scholar 

  8. Li J, Wang J, Chen X, Lv Z, Chen T, Wang T (2014) A highly conductive proton exchange membrane for high temperature fuel cells based on poly(5-vinyl tetrazole) and sulfonated polystyrene. Solid State Ionics 255:128–134

    Article  CAS  Google Scholar 

  9. Jang W, Sundar S, Choi S, Shul Y, Han H (2006) Acid–base polyimide blends for the application as electrolyte membranes for fuel cells. J Membr Sci 280(1–2):321–329

    Article  CAS  Google Scholar 

  10. Wang H, Zhuang X, Li X, Wang W, Wang Y, Cheng B (2015) Solution blown sulfonated poly(ether sulfone)/poly(ether sulfone) nanofiber-Nafion composite membranes for proton exchange membrane fuel cells. J Appl Polym Sci 132(38):42572

    Google Scholar 

  11. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  Google Scholar 

  12. Wei Y, Shen L, Wang F et al (2011) Synthesis and characterization of novel nanocomposite membrane of sodium titanate/Nafion. Mater Lett 65(11):1684–1687

    Article  CAS  Google Scholar 

  13. Wang L, Advani SG, Prasad AK (2013) PBI/Nafion/SiO2 hybrid membrane for high-temperature low-humidity fuel cell applications. Electrochim Acta 105:530–534

    Article  CAS  Google Scholar 

  14. Savinell R, Yeager E, Tryk D, Landau U, Wainright J, Weng D, Lux K, Litt M, Rogers C (1994) A polymer electrolyte for operation at temperatures up to 200 °C. J Electrochem Soc 141:L146–L148

    Article  Google Scholar 

  15. Jin Y, Qiao S, Zhang L, Xu ZP, Smart S, Costa JCD, Lu GQ (2008) Novel Nafion® composite membranes with mesoporous silica nanospheres as inorganic fillers. J Power Sources 185:664–669

    Article  CAS  Google Scholar 

  16. Ke C, Li X, Shen Q, Qu S, Shao Z, Yi B (2011) Investigation on sulfuric acid sulfonation of in-situ sol–gel derived Nafion/SiO2 composite membrane. Int J Hydrog Energy 36(5):3606–3613

    Article  CAS  Google Scholar 

  17. Li N, Lee SY, Liu YL, Lee YM, Guiver MD (2012) A new class of highly-conducting polymer electrolyte membranes: aromatic ABA triblock copolymers. Energy Environ Sci 5(1):5346–5355

    Article  CAS  Google Scholar 

  18. Zhang S, He G, Gong X et al (2015) Electrospun nanofiber enhanced sulfonated poly (phthalazinone ether sulfone ketone) composite proton exchange membranes. J Membr Sci 493:58–65

    Article  CAS  Google Scholar 

  19. Su Y, Liu Y, Wang D, Lai J, Guiver MD, Liu B (2009) Increases in the proton conductivity and selectivity of proton exchange membranes for direct methanol fuel cells by formation of nanocomposites having proton conducting channels. J Power Sources 194(1):206–213

    Article  CAS  Google Scholar 

  20. Li H, Liu Y (2014) Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J Mater Chem A 2(11):3783

    Article  CAS  Google Scholar 

  21. Zhang B, Zhuang XP, Cheng B, Wang N, Ni Y (2014) Carbonaceous nanofiber-supported sulfonated poly(ether ether ketone) membranes for fuel cell applications. Mater Lett 115:248–251

    Article  CAS  Google Scholar 

  22. Lee C, Jo SM, Choi J, Baek K, Truong YB, Kyratzis IL, Shul Y (2013) SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J Mater Sci 48:3665–3671

    Article  CAS  Google Scholar 

  23. Huang Z, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  24. Yu JH, Fridrikh SV, Rutledge GC (2004) Production of Submicrometer diameter fibers by two-fluid electrospinning. Adv Mater 16(17):1562–1566

    Article  CAS  Google Scholar 

  25. Shahgaldi S, Ghasemi M, Wan Daud WR, Yaakob Z, Sedighi M, Alam J, Ismail AF (2014) Performance enhancement of microbial fuel cell by PVDF/Nafion nanofibre composite proton exchange membrane. Fuel Process Technol 124:290–295

    Article  CAS  Google Scholar 

  26. Lee J, Kim N, Lee M, Lee S (2011) SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells. J Membr Sci 367:265–272

    Article  CAS  Google Scholar 

  27. Kumar GG, Kim AR, Nahm KS, Elizabeth R (2009) Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC. Int J Hydrog Energy 34:9788–9794

    Article  CAS  Google Scholar 

  28. Yu DM, Yoon S, Kim T, Lee JY, Lee J, Hong YT (2013) Properties of sulfonated poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells. J Membr Sci 446:212–219

    Article  CAS  Google Scholar 

  29. Hasani-Sadrabadi MM, Shabani I, Soleimani M, Moaddel H (2011) Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications. J Power Sources 196:4599–4603

    Article  CAS  Google Scholar 

  30. Hołda AK, Aernouts B, Saeys W et al (2013) Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes[J]. J Membr Sci 442:196–205

    Article  Google Scholar 

  31. Naik PV, Bernstein R, Vankelecom IFJ (2016) Influence of support layer and PDMS coating conditions on composite membrane performance for ethanol/water separation by pervaporation. J Appl Polym Sci 133(28):43670

  32. Pandey J, Shukla A (2013) Synthesis and characterization of PVDF supported silica immobilized phosphotungstic acid (Si-PWA/PVDF) ion exchange membrane. Mater Lett 100:292–295

    Article  CAS  Google Scholar 

  33. Wen S, Gong C, Tsen W, Shu Y, Tsai F (2009) Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells. Int J Hydrog Energy 34(21):8982–8991

    Article  CAS  Google Scholar 

  34. Wu H, Cao Y, Shen X, Li Z, Xu T, Jiang Z (2014) Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly (ether ether ketone) hybrid membranes for direct methanol fuel cells. J Membr Sci 463:134–144

    Article  CAS  Google Scholar 

  35. Xie Q, Li Y, Chen X, Hu J, Li L, Li H (2015) Composite proton exchange membranes based on phosphosilicate sol and sulfonated poly(ether ether ketone) for fuel cell applications. J Power Sources 282:489–497

    Article  CAS  Google Scholar 

  36. Wu H, Cao Y, Li Z, He G, Jiang Z (2015) Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells. J Power Sources 273:544–553

    Article  CAS  Google Scholar 

  37. Li H, Zhang G, Wu J, Zhao C, Zhang Y, Shao K, Han M, Lin H, Zhu J, Na H (2010) A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells. J Power Sources 195(19):6443–6449

    Article  CAS  Google Scholar 

  38. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  39. Changkhamchom S, Sirivat A (2014) High proton conductivity ZSM-5/sulfonated poly(ether ketone ether sulfone) (S-PEKES) composite proton exchange membrane for using in direct methanol fuel cell. Solid State Ionics 263:161–166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the National Natural Science Foundation of China (51473121), the Science and Technology Plans of Tianjin (15PTSYJC00230 and 14TXGCCX00014), National science and technology support program (2015BAE01B03), the Fund Project for Transformation of Scientific and Technological Achievements from Jiangsu Province (BA2015182), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of Ministry of Education of China (Grand no. IRT13084) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xupin Zhuang or Bowen Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, G., Li, X. et al. Preparation and characterization of proton exchange membranes with through-membrane proton conducting channels. Ionics 23, 2359–2366 (2017). https://doi.org/10.1007/s11581-017-2078-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2078-x

Keywords

Navigation