Skip to main content
Log in

Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The ionic conductivity and dielectric properties of the solid nanocomposite polymer electrolytes formed by dispersing a low particle-sized TiO2 ceramic filler in a poly (ethylene oxide) (PEO)-AgNO3 matrix are presented and discussed. The solid nanocomposite polymer electrolytes are prepared by hot press method. The optimum conducting solid polymer electrolyte of polymer PEO and salt AgNO3 is used as host matrix and TiO2 as filler. From the filler concentration-dependent conductivity study, the maximum ionic conductivity at room temperature is obtained for 10 wt% of TiO2. The real part of impedance (Z′) and imaginary part of impedance (Z″) are analyzed using an LCR meter. The dielectric properties of the highest conducting solid polymer electrolyte are analyzed using dielectric permittivity (ε′), dielectric loss (ε″), loss tangent (tan δ), real part of the electric modulus (M′), and imaginary part of the electric modulus (M″). It is observed that the dielectric constant (ε′) increases sharply towards the lower frequencies due to the electrode polarization effect. The maxima of the loss tangent (tan δ) shift towards higher frequencies with increasing temperature. The peaks observed in the imaginary part of the electric modulus (M″) due to conductivity relaxation shows that the material is ionic conductor. The enhancement in ionic conductivity is observed when nanosized TiO2 is added into the solid polymer electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Money BK, Hariharan K, Swenson J (2014) Relation between structural and conductivity relaxation in PEO and PEO based electrolytes. Solid State Ionics 262:785–789

    Article  Google Scholar 

  2. Deraman SK, Mohamed NS, Subban RHY (2013) Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)—ammonium triflate-ionic liquid for proton battery. Int J Electrochem Sci 8:1459–1468

    CAS  Google Scholar 

  3. Agrawal RC, Pandey GP (2008) Solid polymer electrolyte: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001 (18 pp)

    Article  Google Scholar 

  4. Kumar Y, Hashmi SA, Pandey GP (2011a) Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 201:73–80

    Article  CAS  Google Scholar 

  5. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Morphology, chemical interaction, and conductivityof a PEO-ENR50 based on solid polymer electrolyte. Ionics 16:161–170

    Article  CAS  Google Scholar 

  6. Kim S, Park SJ (2009) Preparation and electrochemical properties of composite polymer electrolytes containing 1-ethyl-3-methylimidazolium tetrafluoroborate salts. Electrochim Acta 54:3775–3780

    Article  CAS  Google Scholar 

  7. Kumar KN, Kang M, Sivaiah K, Ravi M, Ratnakaram YC (2016) Enhanced electrical properties of polyethylene oxide (PEO) + polyvinylpyrrolidone (PVP): Li+ blended polymer electrolyte films with addition of Ag nanofiller. Ionics 22:815–825

    Article  CAS  Google Scholar 

  8. Liu HK, Wang GX, Guo ZP, Wang JZ, Konstantinov K (2007) The impact of nanomaterials on Li-ion rechargeable batteries. J New Mat Electrochem 10:101–104

    Article  CAS  Google Scholar 

  9. Ghosh A, Kofinas P (2008) PEO based block copolymer as solid state lithium nattery electrolyte. ECS Trans 11:131–137

    Article  CAS  Google Scholar 

  10. Watanabe M, Nagano S, Sanui K, Ogata N (1986) Ionic conductivity of network polymers from poly(ethylene oxide) containing lithium perchlorate. Polym J 18:809–817

    Article  CAS  Google Scholar 

  11. Fahmi EM, Ahmad A, Nazeri NNM, Hamzah H, Razali H, Rahman MYA (2012) Effect of LiBF4 salt concentration on the properties of poly (ethylene oxide)-based composite polymer electrolyte. Int J Electrochem Sci 7:5798–5804

    CAS  Google Scholar 

  12. Xue Z, Dan He D, Xie X Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J of Mater Chem A 3:19218–19253

  13. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  14. Kumer B, Scanlon LG (1994) Polymer-ceramic composite electrolyte. J Power Sources 52:261–268

    Article  Google Scholar 

  15. Kumar B, Rodrigues SJ, Koka S (2002) The crystalline to amorphous transition in PEO-based composite electrolytes: role of lithium salts. Electrochim Acta 47:4125–4131

    Article  CAS  Google Scholar 

  16. Pitawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9 LiTf. Solid State Ionics 178:885–888

    Article  CAS  Google Scholar 

  17. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J. Electrochemical Society 147:1718–1721

    Article  CAS  Google Scholar 

  18. Wieczorek W, Florjancyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40:2251–2258

    Article  CAS  Google Scholar 

  19. Verma ML, Sahu HD (2015) Ionic conductivity and dielectric behavior of PEO-based silver ion conducting nanocomposite polymer electrolytes. Ionics 21:3223–3231

    Article  CAS  Google Scholar 

  20. Verma ML, Minakshi M, Singh NK (2014a) Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor. Electrochim Acta 137:497–503

    Article  CAS  Google Scholar 

  21. Polu AR, Rhee HW (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353

    Article  CAS  Google Scholar 

  22. Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano manganese-composite polymer electrolytes. Int J Electrochem Sci 6:4737–4748

    CAS  Google Scholar 

  23. Mohapatra SR, Thakur AK, Choudhary RNP (2008) Studies on PEO-based sodium ion conducting composite polymer films. Ionics 14:255–262

    Article  CAS  Google Scholar 

  24. Polu AR, Rhee HW (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n = 13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329

    Article  CAS  Google Scholar 

  25. Kumar KK, Ravi M, Pavani Y, Bhavani S et al (2011b) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionicconductivity and optical energy band gaps. Physica B 406:1706–1712

    Article  Google Scholar 

  26. Karuppasamy K, Antony R, Thanikaikarasan S et al (2013) Combined effect of nanochitosan and succinonitrile on structural, mechanical, thermal, and electrochemical properties of plasticized nanocomposite polymer electrolytes (PNCPE) for lithium batteries. Ionics 19:747–755

    Article  CAS  Google Scholar 

  27. Angulakshmi N, Yoo DJ et al (2013) MgAl2SiO6-incorporated poly (ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Ionics DOI. doi:10.1007/s11581-013-0985-z

    Google Scholar 

  28. Prabakaran P, Manimuthu RP, Gurusamy S (2016) Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li-battery applications. J Solid State Electrochem DOI. doi:10.1007/s10008-016-3477-z

    Google Scholar 

  29. Singh NK, Verma ML, Minakshi M (2015) PEO nanocomposite polymer electrolyte for solid state symmetric capacitors. Bull Mater Sci 38:1577–1588

    Article  CAS  Google Scholar 

  30. Karuppasamy K, Thanikaikarasan S, Antony R et al (2012) Effect of nanochitosan on electrochemical, interfacial and thermal properties of composite solid polymer electrolytes. Ionics. doi:10.1007/s11581-012-0678-z

    Google Scholar 

  31. Genova FKM, Selvasekarapandian S, Karthikeyan S, Vijaya N et al (2015) Lithium ion-conducting blend polymer electrolyte based on PVA-PAN doped with lithium nitrate. Polym-Plast Technol Eng. doi:10.1080/03602559.2015.1050523

    Google Scholar 

  32. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible andall-solid-state paper like polymer supercapacitors. Nano Lett 10:4025–4031

    Article  CAS  Google Scholar 

  33. Laxmi N, Chandra S (2001) Proton conducting composites of heteropolyacid hydrates (phosphomolybdic and phosphotungstic acids) dispersed with insulating Al2O3. Phys Status Solidi (a) 186:395

    Google Scholar 

  34. Verma ML, Minakshi M, Singh NK (2014b) Structural and electrochemical properties of nanocomposite polymer electrolyte for electrochemical devices. Ind Eng Chem Res. doi:10.1021/ie502615w

    Google Scholar 

  35. Xu D, Sridhar V, Mahapatra SP, Kim JK (2009) Dielectric properties of exfoliated graphite reinforced flouroelastomer composites. J Appl Polym Sci 111:1358–1368

    Article  CAS  Google Scholar 

  36. Al-Saleh MH, Al-Anid HK, Husain YA, El-Ghanem HM, Jawad S (2013) Impedance characteristics and conductivity of CNT/ABS nanocomposites. J Phys D Appl Phys 46:385305 (8pp)

    Article  Google Scholar 

  37. Maier J (2004) Ionic transport in nano-sized systems. Solid State Ionics 175:7–12

    Article  CAS  Google Scholar 

  38. Sharma JP, Sekhon SS (2007) Nanodispersed polymer gel electrolytes: conductivity modification with the addition of PMMA and fumed silica. Solid State Ionics 178:439–445

    Article  CAS  Google Scholar 

  39. Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2009) LiNMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: a comparative study with variation of salt and plasticizer with filler. Electrochim Acta 54:1218–1227

    Article  CAS  Google Scholar 

  40. Agrawal RC, Gupta RK (1999) Superionic solids: composite electrolyte phase—an overview. J Mater Sci 34:1131–1162

    Article  CAS  Google Scholar 

  41. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461

    Article  CAS  Google Scholar 

  42. Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97:644

    Article  Google Scholar 

  43. Ravi M, Song S, Gu K, Tang J, Zhang Z (2015) Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films. Mater Sci Eng B 195:74–83

    Article  CAS  Google Scholar 

  44. Shyly PM, Karuppasamy K, Linda T, Thiravetyan P, Balakumar S et al (2012) Ionic conductivity and dielectric studies of chitin nanofiber (CNF) incorporated PMMA based polymer electrolytes. IOSR J Appl Phys 1:47–51

    Article  Google Scholar 

  45. Zamri SFM, Latif FA et al (2014) Ionic conductivity and dielectric properties of LiBF4 doped PMMA/ENR 50 filled acid modified SiO2 electrolytes. Procedia Technol 15:850–856

    Article  Google Scholar 

  46. Tripathi SK, Gupta A, Jain A, Kumari M (2013) Electrochemical studies on nanocomposite polymer electrolytes. Indian J Pure & Appl Phys 51:358–361

    CAS  Google Scholar 

  47. Reicha FM, El-Hiti M, El-Sonabati AZ, Diab MA (1991) Conducting polymers. V. Electrical conductivity of polymer complexes of bis-2,6-diaminopyridinesulphoxide-copper halides. J. Phys. D. Appl Phys 24:369

    CAS  Google Scholar 

  48. Aziz SB (2013) Li+ ion conduction mechanism in poly (ecaprolactone)- based polymer electrolyte. Iran Polym J 22:877–883

    Article  CAS  Google Scholar 

  49. Nithya H, Selvasekarapandian S, Kumar DA et al (2011) Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO). Mater Chem Phys 126:404–408

    Article  CAS  Google Scholar 

  50. Liew CW, Ramesh S, Durairaj R (2012) Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC -impedance, dielectric behavior, and HATR–FTIR characteristics. J Mater Res 27:2996–3004

    Article  CAS  Google Scholar 

  51. Choudhary S, Sengwa RJ (2011) Dielectric relaxation spectroscopy and ion conduction in poly (ethylene oxide)-blend saltsmontmorillonite nanocomposite electrolytes. Indian J Pure Appl Phys 49:204–213

    CAS  Google Scholar 

  52. Kumar TV, Chary AS, Bhardwaj S, Awasthi AM, Reddy SN (2013) Dielectric relaxation, ionic conduction and complex impedance studies on NaNO3 fast ion conductor. Int J Mater Sci Appl 2:173–178

    CAS  Google Scholar 

  53. Gurusiddappa J, Madhuri W, Suvarna RP, Dasan KP (2016) Conductivity and dielectric behavior of polyethylene oxide-lithium perchlorate solid polymer electrolyte films. Indian Journal of Advances in Chemical Science 4:14–19

    CAS  Google Scholar 

  54. Sikkanthar S, Karthikeyan S, Selvasekarapandian S et al (2016) Structural, electrical conductivity, and transport analysis of PAN–NH4Cl polymer electrolyte system. Ionics 22:1085–1094

  55. Kumar M, Srivastava N (2014) Conductivity and dielectric investigation of NH4I-doped synthesized polymer electrolyte system. Ionics. doi:10.1007/s11581-014-1294-x

  56. Ramlli MA, Isa MIN (2014) Conductivity study of carboxyl methyl cellulose solid biopolymer electrolytes (SBE) doped with ammonium fluoride. Res J Recent Sci 3:59–66

    Google Scholar 

  57. Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosansilver triflate electrolyte membrane. Express Polym Lett 4:300–310

    Article  CAS  Google Scholar 

  58. Dutta A, Sinha TP, Jena P, Adak S (2008) Ac conductivity and dielectric relaxation in ionically conducting soda-lime-silicate glasses. J Non-Cryst Solids 354:3952–3957

    Article  CAS  Google Scholar 

  59. Kumar M, Tiwari T, Chauhan JK, Srivastava N (2014) Erratum on ‘Understanding the ion dynamics and relaxation behavior from impedance spectroscopy of NaI doped Zwitterionic polymer system’. Mater Res Express 1:049601

    Article  Google Scholar 

  60. Pradhan DK, Choudhary RNP, Samantaray BK (2009) Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater Chem Phys 115:557–561

    Article  CAS  Google Scholar 

  61. Raghu S, Archana K, Sharanappa C, Ganesh S, Devendrappa H (2015) The physical and chemical properties of gamma ray irradiated polymer electrolyte films. J. Non-Cryst Solids 426:55–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the kind support of the management of Shri Shankaracharya Technical Campus (SSTC). Helpful discussions with Prof. R C Agrawal (School of Studies in Physics Pt. RSU, Raipur, Chattishgarh, India) and Dr. Manickam Minakshi (School of Engineering and Information Technology, Murdoch University, Australia) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan L. Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M.L., Sahu, H.D. Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes. Ionics 23, 2339–2350 (2017). https://doi.org/10.1007/s11581-017-2063-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2063-4

Keywords

Navigation