Advertisement

Ionics

, Volume 23, Issue 8, pp 2167–2174 | Cite as

Improvement of the Ir/IrO2 pH electrode via hydrothermal treatment

  • Dandan Wang
  • Chi Yang
  • Jinfeng Xia
  • Zhenhai Xue
  • Danyu Jiang
  • Guohong Zhou
  • Xiaohong Zheng
  • Huiping Zheng
  • Yuansheng Du
  • Qiang LiEmail author
Original Paper

Abstract

Several Ir/IrO2 pH electrodes were prepared by a cyclic thermal oxidation process via dip-coating in a concentrated solution of NaOH. A hydrothermal hydration treatment at 220 °C for 24 h was used to address the problematic potential drift that is common in Ir/IrO2 pH electrodes. The electrodes that were treated by the hydrothermal method exhibited good stability and high sensitivity compared to those that were hydrated at room temperature. The reasons for this improvement were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy. The results suggested that the hydrothermally treated electrode had a more orderly crystal arrangement and a higher content of OH groups, which drove improvements in the performance of electrode by modification of the Ir/IrO2 structure. The relationship between the electrode structure and performance was investigated and discussed in detail herein.

Keywords

Ir/IrO2 electrodes Hydrothermal hydration Improvement Stability Potential drift 

Notes

Acknowledgments

The author would like to thank the Shanghai Institute of Ceramics, the Chinese Academy of Sciences, and the Inorganic Materials Analysis and Testing Center for supporting this work.

Compliance with ethical standards

This work did not impact on any human or animal rights.

References

  1. 1.
    Ding K, William E, Seyfried J (2007) In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures. Chem Rev 107(2):601–622. doi: 10.1021/cr050367s
  2. 2.
    Yu J, Khalil M, Liu N, Lee R (2014) Iridium oxide-based chemical sensor for in situ pH measurement of oilfield-produced water under subsurface conditions. Ionics 21(3):855–861. doi: 10.1007/s11581-014-1214-0 CrossRefGoogle Scholar
  3. 3.
    Slavcheva E, Schnakenberg U, Mokwa W (2006) Deposition of sputtered iridium oxide-Influence of oxygen flow in the reactor on the film properties. Appl Surf Sci 253(4):1964–1969. doi: 10.1016/j.apsusc.2006.03.073 CrossRefGoogle Scholar
  4. 4.
    Głab S, Hulanicki A, Edwall G, Ingman F (1989) Metal-metal oxide and metal oxide electrodes as pH Sensors. Crit Rev Anal Chem 21(1):29–47. doi: 10.1080/10408348908048815 CrossRefGoogle Scholar
  5. 5.
    Fog A, Buck RP (1984) Electronic semiconducting oxides as pH sensors. Sensors Actuators 5(2):137–146. doi: 10.1016/0250-6874(84)80004-9 CrossRefGoogle Scholar
  6. 6.
    Gottesfeld S, McIntyre JDE, Beni G, Shay JL (1978) Electrochromism in anodic iridium oxide films. Appl Phys Lett 33(2):208. doi: 10.1063/1.90277 CrossRefGoogle Scholar
  7. 7.
    Song I, Fink K, Payer JH (1998) Metal oxide/metal pH sensor: effect of anions on pH measurements. Corros Sci 54(1):13–19. doi: 10.5006/1.3284823 CrossRefGoogle Scholar
  8. 8.
    Olthuis W, Robben MAM, Bergveld P (1990) pH sensor properties of electrochemically grown iridium oxide. Sensors Actuators B 2(4):247–256. doi: 10.1016/0925-4005(90)80150-X CrossRefGoogle Scholar
  9. 9.
    Baur JE, Spaine TW (1998) Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium(III) oxide. J Electroanal Chem 443(2):208–216. doi: 10.1016/S0022-0728(97)00532-9 CrossRefGoogle Scholar
  10. 10.
    Hasenkamp W, Musa S, Alexandru A, Eberle W, Bartic C (2009) Electrodeposition and characterization of iridium oxide as electrode material for neural recording and stimulation. Springer, Berlin, pp 472–475Google Scholar
  11. 11.
    Patrick J, Kinlen JEH, Hubbard DE (1994) A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sensors Actuators B 22(1):13–25. doi: 10.1016/0925-4005(94)01254-7 CrossRefGoogle Scholar
  12. 12.
    Katsube T, Lauks I, Zemel JN (1982) pH-sensitive sputtered iridium oxide films. Sensors Actuators 2:399–410. doi: 10.1016/0250-6874(81)80060-1 CrossRefGoogle Scholar
  13. 13.
    Silvano Bordi MC, Papeschi G, Pinzauti S (1984) Iridium/iridium oxide electrode for potentiometric determination of proton activity in hydroorganic solutions at sub-zero temperatures. Anal Chem 56(2):317–319. doi: 10.1021/ac00266a051 CrossRefGoogle Scholar
  14. 14.
    Papeschi G, Bordi S, Carlà M, Criscione L, Ledda F (2009) An iridium-iridium oxide electrode for in vivo monitoring of blood pH changes. J Med Eng Technol 5(2):86–87. doi: 10.3109/03091908109042445 CrossRefGoogle Scholar
  15. 15.
    Pan Y, Seyfried WE (2008) Experimental and theoretical constraints on pH measurements with an iridium oxide electrode in aqueous fluids from 25 to 175 °C and 25 MPa. J Solut Chem 37(8):1051–1062. doi: 10.1007/s10953-008-9293-z CrossRefGoogle Scholar
  16. 16.
    Huang W-D, Cao H, Deb S, Chiao M, Chiao JC (2011) A flexible pH sensor based on the iridium oxide sensing film. Sensors Actuators A Phys 169(1):1–11. doi: 10.1016/j.sna.2011.05.016 CrossRefGoogle Scholar
  17. 17.
    Wang M, Yao S (2003) Carbonate-melt oxidized iridium wire for pH sensing. Electroanalysis 15(20):1606–1615. doi: 10.1002/elan.200302723 CrossRefGoogle Scholar
  18. 18.
    VanHoudt P, Lewandowski Z, Little B (1992) Iridium oxide pH microelectrode. Biotechnol Bioeng 40(5):601–608. doi: 10.1002/bit.260400507 CrossRefGoogle Scholar
  19. 19.
    Kenneth G, Kreider MJT, Cline JP (1995) Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides. Sensors Actuators B 28(3):167–172. doi: 10.1016/0925-4005(95)01655-4 CrossRefGoogle Scholar
  20. 20.
    Chrisanti S (2003) A pH electrode based on melt-oxidized iridium oxide. Dissertation, The Ohio State UniversityGoogle Scholar
  21. 21.
    Huang F, Jin Y, Wen L (2015) Investigations of the hydration effects on cyclic thermo-oxidized Ir/IrOx electrode. J Electrochem Soc 162(12):B337–B343. doi: 10.1149/2.0571512jes
  22. 22.
    Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36(2):225–241. doi: 10.1016/0013-4686(91)85244-2 CrossRefGoogle Scholar
  23. 23.
    Michael L, Hitchman SR (1992) A field-induced poising technique for promoting convergence of standard electrode potential values of thermally oxidized iridium pH sensors. Talanta 39(2):137–144. doi: 10.1016/0039-9140(92)80008-2 CrossRefGoogle Scholar
  24. 24.
    VanHoudt P, Lewandowski Z, Little B (1992) Iridium oxide pH microelectrode. Biotechnol Bioeng 40(5):601–608. doi: 10.1002/bit.260400507 CrossRefGoogle Scholar
  25. 25.
    Suchanek WL, Riman RE (2006) Hydrothermal synthesis of advanced ceramic powders. Adv Sci Technol 45:184–193. doi: 10.4028/www.scientific.net/AST.45.184 CrossRefGoogle Scholar
  26. 26.
    Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angew Chem Int Ed 24(12):1026–1040. doi: 10.1002/anie.198510261 CrossRefGoogle Scholar
  27. 27.
    Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43(7):2085–2103. doi: 10.1007/s10853-007-1853-x CrossRefGoogle Scholar
  28. 28.
    Juodkazytė J, Šebeka B, Valsiunas I, Juodkazis K (2005) Iridium anodic oxidation to Ir (III) and Ir(IV) hydrous oxides. Electroanalysis 17(11):947–952. doi: 10.1002/elan.200403200 CrossRefGoogle Scholar
  29. 29.
    Huang YS (1989) Raman spectrum of IrO2. Solid State Commun 70(5):517–522. doi: 10.1016/0038-1098(89)90942-3 CrossRefGoogle Scholar
  30. 30.
    Musić S, Popović S, Maljković M, Skoko Z, Furić K, Gajović A (2003) Thermochemical formation of IrO2 and Ir. Mater Lett 57(29):4509–4514. doi: 10.1016/s0167-577x(03)00352-5 CrossRefGoogle Scholar
  31. 31.
    Korotcov AV, Huang Y-S, Tsai D-S, Tiong K-K (2006) Raman scattering characterization of vertical aligned 1D IrO2 nanocrystals grown on single crystal oxide substrates. Solid State Commun 137(6):310–314. doi: 10.1016/j.ssc.2005.11.038 CrossRefGoogle Scholar
  32. 32.
    Gheeraert E, Deneuville A, Bonnot AM, Abello L (1992) Defects and stress analysis of the Raman spectrum of diamond films. Diam Relat Mater 1(5-6):525–528. doi: 10.1016/0925-9635(92)90157-J CrossRefGoogle Scholar
  33. 33.
    Mougin J, Lucazeau G, Galerie A, Dupeux M (2001) Influence of cooling rate and initial surface roughness on the residual stresses in chromia scales thermally grown on pure chromium. Mater Sci Eng A 308(1-2):118–123. doi: 10.1016/S0921-5093(00)02037-2 CrossRefGoogle Scholar
  34. 34.
    Julie Mougin AG, Lucazeau G, Bracho-Troconis CB (2001) Raman spectroscopy determination of residual stresses at room temperature in chromia scales grown on pure chromium in oxygen and in water vapour. Mater Sci Forum 369-372:841–848. doi: 10.4028/www.scientific.net/MSF.369-372.841 CrossRefGoogle Scholar
  35. 35.
    Julie Mougin NR, Lucazeau G, Galerie A (2001) In situ Raman monitoring of chromium oxide scale growth for stress determination. J Raman Spectrosc 32(9):739–744. doi: 10.1002/jrs.734 CrossRefGoogle Scholar
  36. 36.
    Kurpaska L, Favergeon J, Grosseau-Poussard J-L, Lahoche L, Moulin G (2016) In-situ stress analysis of the Zr/ZrO2 system as studied by Raman spectroscopy and deflection test in monofacial oxidation techniques. Appl Surf Sci 385(1):106–112. doi: 10.1016/j.apsusc.2016.05.074 CrossRefGoogle Scholar
  37. 37.
    Przybilla W, Schütze M (2002) Role of growth stresses on the structure of oxide scales on nickel at 800 and 900 °C. Oxid Met 58(1):103–145. doi: 10.1023/A:1016016608591 CrossRefGoogle Scholar
  38. 38.
    Birnie J, Craggs C, Gardiner DJ, Graves PR (1992) Ex situ and in situ determination of stress distributions in chromium oxide films by Raman microscopy. Corros Sci 33(1):1–12. doi: 10.1016/0010-938X(92)90014-T CrossRefGoogle Scholar
  39. 39.
    Hou PY, Paulikas AP, Veal BW (2009) Growth strains in thermally grown Al2O3 scales studied using synchrotron radiation. JOM 61(7). doi: 10.1007/s11837-009-0103-x
  40. 40.
    Kötz R, Lewerenz HJ, Stucki S (1983) XPS studies of oxygen evolution on Ru and RuO2 Anodes. J Electrochem Soc 130(4):825–829. doi: 10.1149/1.2119829 CrossRefGoogle Scholar
  41. 41.
    Andrade JD (1985) X-ray photoelectron spectroscopy (XPS). Surface and interfacial aspects of biomedical polymers. Springer, US, pp 105–195CrossRefGoogle Scholar
  42. 42.
    Hall HY, Sherwood PMA (1984) X-ray photoelectron spectroscopic studies of the iridium electrode system. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 80:135–152. doi: 10.1039/F19848000135 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Dandan Wang
    • 1
  • Chi Yang
    • 2
  • Jinfeng Xia
    • 3
  • Zhenhai Xue
    • 4
  • Danyu Jiang
    • 3
  • Guohong Zhou
    • 2
  • Xiaohong Zheng
    • 1
  • Huiping Zheng
    • 1
  • Yuansheng Du
    • 1
  • Qiang Li
    • 1
    Email author
  1. 1.East China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Beijing Institute of Space Long March VehicleBeijingPeople’s Republic of China
  3. 3.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  4. 4.Shanghai Institute of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations