Skip to main content
Log in

Low-temperature one-step solid-phase synthesis of carbon-encapsulated TiO2 nanocrystals as anode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A simple and highly efficient method is developed for in situ one-step preparation of carbon co-encapsulated anatase and rutile TiO2 nanocrystals (TiO2@C) with core-shell structure for lithium-ion battery anode. The synthesis is depending on the solid-phase reaction of titanocene dichloride with ammonium persulfate in an autoclave at 200 °C for 30 min. The other three titanocene complexes including bis(cyclopentadienyl)dicarbonyl titanium, cyclopentadienyltitanium trichloride, and cyclopentadienyl(cycloheptatrienyl)titanium are used instead to comprehensively investigate the formation mechanism and to improve the microstructure of the product. The huge heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the TiO2 nanocrystals, resulting in the formation of core-shell structure. The TiO2 nanocrystals prepared by titanocene dichloride have an equiaxed morphology with a small diameter of 10–55 nm and the median size is 30.3 nm. Hundreds of TiO2 nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 20–30 nm in thickness. The content of TiO2 nanocrystals in the nanocomposite is about 31.1 wt.%. This TiO2@C anode shows stable cyclability and retains a good reversible capacity of 400 mAh g−1 after 100 cycles at a current density of about 100 mA g−1, owing to the enhanced conductivity and protection of carbon shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiang F, Yang L, Tian Y, Yang P, Hu S, Huang K, Wei X, Zhong J (2014) Bi-component MnO/ZnO hollow microspheres embedded in reduced graphene oxide as electrode materials for enhanced lithium storage. Ceram Int 40(3):4297–4304

    Article  CAS  Google Scholar 

  2. Sasaki T, Ukyo Y, Novák P (2013) Memory effect in a lithium-ion battery. Nature Mater 12(6):569–575

    Article  CAS  Google Scholar 

  3. Mancini M, Nobili F, Tossici R, Wohlfahrt-Mehrens M, Marassi R (2011) High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose. J Power Sources 196(22):9665–9671

    Article  CAS  Google Scholar 

  4. Kubiak P, Fröschl T, Hüsing N, Hörmann U, Kaiser U, Schiller R, Weiss CK, Landfester K, Wohlfahrt-Mehrens M (2011) TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. Small 7(12):1690–1696

    Article  CAS  Google Scholar 

  5. Chen J, Qian Y, Wei X (2010) Comparison of magnetic-nanometer titanium dioxide/ferriferous oxide (TiO2/Fe3O4) composite photocatalyst prepared by acid–sol and homogeneous precipitation methods. J Mater Sci 45(22):6018–6024

    Article  CAS  Google Scholar 

  6. Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sources 192(2):588–598

    Article  CAS  Google Scholar 

  7. Xue W, Shi X, Xia H (2016) Ultrafine Fe2O3 Nanoflakes grafted on TiO2 Nanosheet arrays as advanced anodes for lithium-ion batteries. Sci Adv Mater 8(6):1293–1297

    Article  CAS  Google Scholar 

  8. Wen W, Wu J-m, Jiang Y-z, Yu S-l, Bai J-q, Cao M-H, Cui J (2015) Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage. Sci Rep 5:11804

    Article  Google Scholar 

  9. Zhang X, Aravindan V, Kumar PS, Liu H, Sundaramurthy J, Ramakrishna S, Madhavi S (2013) Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate. Nano 5(13):5973–5980

    CAS  Google Scholar 

  10. Zhu G, Wang Y, Xia Y (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5(5):6652–6667

    Article  CAS  Google Scholar 

  11. Han H, Song T, Lee E-K, Devadoss A, Jeon Y, Ha J, Chung Y-C, Choi Y-M, Jung Y-G, Paik U (2012) Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. ACS Nano 6(9):8308–8315

    Article  CAS  Google Scholar 

  12. Shin JY, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, Nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21(18):3464–3472

    Article  CAS  Google Scholar 

  13. Song T, Han H, Choi H, Lee JW, Park H, Lee S, Park WI, Kim S, Liu L, Paik U (2014) TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res 7(4):491–501

    Article  CAS  Google Scholar 

  14. Shen L, Zhang X, Li H, Yuan C, Cao G (2011) Design and tailoring of a three-dimensional TiO2–graphene–carbon nanotube nanocomposite for fast lithium storage. J Phys Chem Lett 2(24):3096–3101

    Article  CAS  Google Scholar 

  15. Ryu M-H, Jung K-N, Shin K-H, Han K-S, Yoon S (2013) High performance N-doped mesoporous carbon decorated TiO2 nanofibers as anode materials for lithium-ion batteries. J Phys Chem C 117(16):8092–8098

    Article  CAS  Google Scholar 

  16. Lee DH, Park JG, Jin Choi K, Choi HJ, Kim DW (2008) Preparation of brookite-type TiO2/carbon nanocomposite electrodes for application to Li ion batteries. Eur J Inorg Chem 2008(6):878–882

    Article  Google Scholar 

  17. Paulauskas IE, Modeshia DR, Ali TT, El-Mossalamy EH, Obaid AY, Basahel SN, Al-Ghamdi AA, Sartain FK (2013) Photocatalytic activity of doped and undoped titanium dioxide nanoparticles synthesised by flame spray pyrolysis. Platin Met Rev 57(1):32–43

    Article  CAS  Google Scholar 

  18. Macwan D, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46(11):3669–3686

    Article  CAS  Google Scholar 

  19. Lei B-X, Luo Q-P, Sun Z-F, Kuang D-B, Su C-Y (2013) Fabrication of partially crystalline TiO2 nanotube arrays using 1, 2-propanediol electrolytes and application in dye-sensitized solar cells. Adv Powder Technol 24(1):175–182

    Article  CAS  Google Scholar 

  20. Ye M, Liu HY, Lin C, Lin Z (2013) Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small 9(2):312–321

    Article  CAS  Google Scholar 

  21. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884

    Article  CAS  Google Scholar 

  22. Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh KP (2011) Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5(12):9927–9933

    Article  CAS  Google Scholar 

  23. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22(7):813–828

    Article  CAS  Google Scholar 

  24. Oh S, Hwang J, Yoon C, Lu J, Amine K, Belharouak I, Sun Y (2014) High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl Mater Interfaces 6(14):11295–11301

    Article  CAS  Google Scholar 

  25. Wang W, Sa Q, Chen J, Wang Y, Jung H, Yin Y (2013) Porous TiO2/C nanocomposite shells as a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 5(14):6478–6483

    Article  CAS  Google Scholar 

  26. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ Jr (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2(6):949–956

    Article  CAS  Google Scholar 

  27. Yang M-Q, Zhang N, Xu Y-J (2013) Synthesis of fullerene–, carbon nanotube–, and graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl Mater Interfaces 5(3):1156–1164

    Article  CAS  Google Scholar 

  28. Sun X, Xie M, Travis JJ, Wang G, Sun H, Lian J, George SM (2013) Pseudocapacitance of amorphous TiO2 thin films anchored to graphene and carbon nanotubes using atomic layer deposition. J Phys Chem C 117(44):22497–22508

    Article  CAS  Google Scholar 

  29. Janssen AH, Schmidt I, Jacobsen CJH, Koster AJ, de Jong KP (2003) Exploratory study of mesopore templating with carbon during zeolite synthesis. Micropor Mesopor Mater 65(1):59–75

    Article  CAS  Google Scholar 

  30. Erdey L, Gál S, Liptay G (1964) Thermoanalytical properties of analytical-grade reagents. Talanta 11(6):913–940

    Article  CAS  Google Scholar 

  31. Liu B, Zhong N, Fan C, Zhou Y, Fan Y, Yu S, Zhang F, Dong L, Yin Y (2014) Low temperature synthesis and formation mechanism of carbon encapsulated nanocrystals by electrophilic oxidation of ferrocene. Carbon 68:573–582

    Article  CAS  Google Scholar 

  32. Liu B, Huang H, Zhang F, Zhou Y, Li W, Zhang J (2012) Agglomerates of amorphous carbon nanoparticles synthesized by a solution-phase method. Mater Lett 66(1):199–202

    Article  CAS  Google Scholar 

  33. Liu B, Jia D, Zhou Y, Feng H, Meng Q (2007) Low temperature synthesis of amorphous carbon nanotubes in air. Carbon 45(8):1710–1713

    Article  CAS  Google Scholar 

  34. Boyang L, Chunhua F, Jianwei C, Junhua W, Zepeng L, Jiayuan R, Shuaiqin Y, Lihua D, Wenge L (2016) Low temperature in situ synthesis and the formation mechanism of various carbon-encapsulated nanocrystals by the electrophilic oxidation of metallocene complexes. Nanotechnology 27(7):075603

    Article  Google Scholar 

  35. Liu B, Fan C, Chen J, Zhou Y, Dong L, Wang J (2015a) Low temperature one-step synthesis of carbon co-encapsulated NiS2, NiS and S8 nanocrystals by electrophilic oxidation of nickelocene. Mater Lett 142:90–93

    Article  CAS  Google Scholar 

  36. Liu B, Zhang F, Wu Q, Wang J, Li W, Dong L, Yin Y (2015b) Low temperature synthesis of carbon encapsulated Fe7S8 nanocrystals as high performance anode for lithium-ion batteries. Mater Chem Phys 151:60–65

    Article  CAS  Google Scholar 

  37. Shen J, Wang H, Zhou Y, Ye N, Li G, Wang L (2012) Anatase/rutile TiO2 nanocomposite microspheres with hierarchically porous structures for high-performance lithium-ion batteries. RSC Adv 2(24):9173–9178

    Article  CAS  Google Scholar 

  38. Liu B, Zhou Y, Jia D, Zuo P, Shao Y, Zhang J (2011) Effect of heat treatment temperature on microstructure and electrochemical properties of hollow carbon spheres prepared in high-pressure argon. B Mater Sci 34:1707–1714

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by Natural Science Foundation of Shanghai (14ZR1419400, 15ZR1420500), National Natural Science Foundation of China (11572326), Opening fund of State Key Laboratory of Nonlinear Mechanics, and Technology Innovation Action of Shanghai (12nm0503100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyang Liu.

Electronic supplementary material

ESM 1

(PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Shao, Y., Xiang, X. et al. Low-temperature one-step solid-phase synthesis of carbon-encapsulated TiO2 nanocrystals as anode materials for lithium-ion batteries. Ionics 23, 2013–2024 (2017). https://doi.org/10.1007/s11581-017-2053-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2053-6

Keywords

Navigation