Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Charge transport in activated carbon electrodes: the behaviour of three electrolytes vis-à-vis their specific conductance


In this study, the electrochemical performances of different aqueous electrolytes (6 M KOH, 2 M KCl and 0.5 M K2SO4) in activated carbon electrodes are evaluated with regard to their use in electrochemical double layer capacitor (EDLC). The results from cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) were analysed. The lowest value of equivalent series resistance (ESR) and the highest values of specific capacitance and coulombic efficiency were observed, when KOH was the electrolyte. The impedance spectroscopy plots were fitted to an equivalent circuit of ladder type to evaluate the resistances to ion transport at different levels of hierarchies in the pore network. Also, the quality of the double layer capacitance at lower hierarchy that primarily contributes to the overall capacitance of the device was evaluated from the leakage resistance in the equivalent circuit. The fitted circuit parameters were further reviewed vis-à-vis the specific conductance of chosen electrolyte, and the number of successive charge–discharge cycles prior to the EIS measurements.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Conway BE (1999) Electrochemical supercapacitors—scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New York

  2. 2.

    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

  3. 3.

    Sarangapani S, Tilak BV, Chen CP (1996) Materials for electrochemical capacitors: theoretical and experimental constraints. J Electrochem Soc 143:3791–3799

  4. 4.

    Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

  5. 5.

    Kierzek K, Frackowiak E, Lota G, Gryglewicz G, Machnikowski J (2004) Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim Acta 49(4):515–523

  6. 6.

    Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

  7. 7.

    Guo Y, Qi J, Jiang Y, Yang S, Wang Z, Xu H (2003) Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mat Chem Phys 80:704–709

  8. 8.

    Bleda-Martínez MJ, Maciá-Agul ló JA, Lozano-Castelló D, Morallón E, Cazorla-Amorós D, Linares-Solano A (2005) Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon 43(13):2677–2684

  9. 9.

    Kim YJ, Horie Y, Matsuzawa Y, Ozaki S, Endo M, Dresselhaus MS (2004) Structural features necessary to obtain a high specific capacitance in electric double layer capacitors. Carbon 42:2423–2432

  10. 10.

    Shiraishi S, Kurihara H, Tsubota H, Oya A, Soneda Y, Yamada Y (2001a) Electric double layer capacitance of highly porous carbon derived from lithium metal and polytetrafluoroethylene. Electrochem Solid State Lett 4:A5–A8

  11. 11.

    Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A (2003) Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon 41:1765–1775

  12. 12.

    Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41:1633–1639

  13. 13.

    Waidhas M, Mund K (1996) In: Delnirk FM, Ingersoll D, Andrieu X, Naoi K (eds) Proceedings of the symposium on electrochemical capacitor II. The Electrochemical Society, Pennington, p 180

  14. 14.

    Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP (2008) Study of electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem Commun 10:1652–1655

  15. 15.

    Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions. J Electrochem Soc 147(7):2486–2493

  16. 16.

    Shiraishi S, Kurihara H, Oya A (2001b) Electric double layer capacitance of mesoporous activated carbon fiber. Electrochemistry 69:440–443

  17. 17.

    Gryglewicz G, Machnikowski J, Lorenc-Grabowska E, Lota G, Frackowiak E (2005) Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochim Acta 50:1197–1206

  18. 18.

    Lin C, Ritter JA, Popov BN (1999) Correlation of double-layer capacitance with the pore structure of Sol-gel derived carbon Xerogels. J Electrochem Soc 146:3639–3643

  19. 19.

    Keiser H, Beccu KD, Gutjahr MA (1976) Abschätzung der porenstrukturporöserelektrodenausimpedanzmessungen. Electrochim Acta 21:539–543

  20. 20.

    Candy JP, Fouilloux P, Keddam M, Takenouti H (1981) The characterization of porous electrodes by impedance measurements. Electrochim Acta 26:1029–1034

  21. 21.

    Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300

  22. 22.

    Lufrano F, Staiti P, Minutoli M (2003) Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy. J Power Sources 124:314–320

  23. 23.

    Jang JH, Oh SM (2004) Complex capacitance analysis of porous carbon electrodes for electric double-layer capacitors. J Electrochem Soc 151:A571

  24. 24.

    Srinivasan V, Weidner JW (1999) Mathematical modeling of electrochemical capacitors. J Electochem Soc 146(5):1650–1658

  25. 25.

    Yoon S, Jang JH, Ka BH, Oh SM (2005) Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness. Electrochim Acta 50:2255–2262

  26. 26.

    Jang JH, Yooh S, Ka BH, Oh SM (2005) Complex capacitance analysis on leakage current appearing in electric double-layer capacitor carbon electrode. J Electrochem Soc 152:A1418–A1422

  27. 27.

    Honda K, Rao TN, Tryk DA, Fujishima A, Watanabe M, Yasui K, Masuda H (2001) Impedance characteristics of the nanoporous honeycomb diamond electrodes for electrical double-layer capacitor applications. J Electrochem Soc 148:A668–A679

  28. 28.

    Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, Zhang J, Chen Y (2015) Emergence of fibre supercapacitors. Chem Soc Rev 44:647–662

  29. 29.

    Weast RC (1989) CRC handbook of chemistry and physics, 70th edn. CRC Press, FL, p D-221

  30. 30.

    Wolf AV (1966) Aqueous solutions and bodily fluids. Harper and Row, New York

  31. 31.

    Hasegawa G, Kanamori K, Nakanishi K, Abe T (2012) New insights into the relationship between micropore properties, ionic sizes, and electric double-layer capacitance in monolithic carbon electrodes. J Phys Chem C 116(50):26197–26203

  32. 32.

    Dean JA (1999) Lange’s handbook of chemistry, 15th edn. Mcgraw-Hill, New York

  33. 33.

    Raymundo-Pinero E, Kierzek K, Machnikowski J, Beguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507

  34. 34.

    Nasibi M, Golozar MA, Rashed G (2003) Nanoporous carbon particles as an electrode material for electrochemical double layer supercapacitors. Material Letters 91:323–325

  35. 35.

    Shen H, Liu E, Xiang X, Huang Z, Tian Y, Wu Y, Wu Z, Xie H (2012) A novel activated carbon for supercapacitors. Mater Res Bull 47:662–666

Download references

Author information

Correspondence to Somenath Ganguly.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pankaj, Chavhan, M.P. & Ganguly, S. Charge transport in activated carbon electrodes: the behaviour of three electrolytes vis-à-vis their specific conductance. Ionics 23, 2037–2044 (2017). https://doi.org/10.1007/s11581-017-2048-3

Download citation


  • Carbon
  • Supercapacitor
  • Electrolyte
  • Ion
  • Transport