Skip to main content
Log in

A facile low-temperature synthesis of V2O5 flakes for electrochemical detection of hydrogen peroxide sensor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, we report a simple hydrothermal synthesized V2O5 flake employed as an electrode material for non-enzymatic hydrogen peroxide (H2O2) sensor application. The morphology, structural, and electrochemical properties of the as-prepared material were characterized by using various physicochemical and electrochemical methods viz. scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometric (i-t). Moreover, an excellent electrochemical performance has been achieved by using the V2O5 flakes modified glassy carbon electrode (GCE) over the reduction of H2O2. In optimum experimental conditions, the reported electrochemical sensor was found with a wide linear range (0.1–408 μM), low detection limit (0.06 μM), and excellent sensitivity (9.87 μA μM−1 cm−2) with anticipated selectivity. Hence, the novel as-prepared V2O5-GCE provides a new avenue for the fabrication of amperometric H2O2 sensor with excellent real sample analysis.

V2O5 Flakes modified electrode for H2O2 sensor application

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu Z, Zhu Y, Ji X (2014) NiCo2O4-based materials for electrochemical supercapacitors. J Mater Chem A 2:14759–14772

    Article  CAS  Google Scholar 

  2. Zhang Z, Xiaoa F, Wang S (2015a) Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J Mater Chem A 3:11215–11223

    Article  CAS  Google Scholar 

  3. Songa T, Paik U (2016) TiO2 as an active or supplemental material for lithium batteries. J Mater Chem A 4:14–31

    Article  Google Scholar 

  4. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  5. Luo X, Shu H, Wan Q, Wang Z, Yang N (2015) Biosensing applications of V2O5-CeO2 mesoporous silica. Electroanalysis 27:2194–2200

    Article  CAS  Google Scholar 

  6. Veeramani V, Dinesh B, Chen SM, Saraswathi R (2016) Electrochemical synthesis of Au–MnO2 on electrophoretically prepared graphene nanocomposite for high performance supercapacitor and biosensor applications. J Mater Chem A 4:3304–3315

    Article  CAS  Google Scholar 

  7. Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) Nanostructured metal oxide-based biosensors. NPG Asia Mater 3(1):17–24

    Article  Google Scholar 

  8. Wang R, Yan X, Lang J, Zheng Z, Zhang P (2014) A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. J Mater Chem A 2:12724–12732

    Article  CAS  Google Scholar 

  9. Pandey GP, Liu T, Brown E, Yang Y, Li Y, Sun XS, Fang Y, Li J (2016) Mesoporous hybrids of reduced graphene oxide and vanadium pentoxide for enhanced performance in lithium-ion batteries and electrochemical capacitors. ACS Appl Mater Interfaces 8:9200–9210

    Article  CAS  Google Scholar 

  10. Tepavcevic S, Xiong H, Stamenkovic VR, Zuo X, Balasubramanian M, Prakapenka VB, Johnson CS, Rajh T (2012) Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ASC Nano 6:530–538

    Article  CAS  Google Scholar 

  11. Olivetti EA, Kim JH, Sadoway DR, Asatekin A, Mayes AM (2006) Sol-gel synthesis of vanadium oxide within a block copolymer matrix. Chem Mater 18:2828–2833

    Article  CAS  Google Scholar 

  12. Li HY, Wei C, Wang L, Zuo QS, Li X, Xie B (2015) Hierarchical vanadium oxide microspheres forming from hyperbranched nanoribbons as remarkably high performance electrode materials for supercapacitors. J Mater Chem A 3:22892–22901

    Article  CAS  Google Scholar 

  13. Zhang K, Zhang N, Cai H, Wang C (2012) A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers. Microchim Acta 176:137–142

    Article  CAS  Google Scholar 

  14. Zhao J, Qin L, Hao Y, Guo Q, Mu F, Yan Z (2012) Application of tubular tetrapod magnesium oxide in a biosensor for hydrogen peroxide. Microchim Acta 178:439–445

    Article  CAS  Google Scholar 

  15. Zhanga W, Chang YX (2014) Co-doped ZnO nanomaterials as a novel platform for hydrogen peroxide biosensing. ECS Trans 61(19):17–24

    Article  Google Scholar 

  16. Ensafi AA, Jafari-Asl M, Dorostkar N, Ghiaci M, Martınez-Huerta MV, Fierro JLG (2014a) The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. J Mater Chem B 2:706–717

    Article  CAS  Google Scholar 

  17. Gouda MD, Kumar MA, Thacur MS, Karanth NG (2002) Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents. Biosens Bioelectron 17:503–507

    Article  CAS  Google Scholar 

  18. Shan D, Zhu MJ, Xue HG, Cosnier S (2007) Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: calcium carbonate nanoparticles. Biosens Bioelectron 22:1612

    Article  CAS  Google Scholar 

  19. Cosnier S, Szunerits S, Marks RS, Novoa A, Puech L, Perez E, Rico-Lattes I (2000) A rapid and easy procedure of biosensor fabrication by micro-encapsulation of enzyme in hydrophilic synthetic latex films. Application to the amperometric determination of glucose. Electrochem Commun 2:851–855

    Article  CAS  Google Scholar 

  20. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58

    Article  CAS  Google Scholar 

  21. Qian L, Mao J, Tian X, Yuan H, Xiao D (2013) In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. Sensors Actuators B Chem 176:952–959

    Article  CAS  Google Scholar 

  22. Lee JH, Tang IN, Weinstein-Lloyd JB (1990) A non-enzymatic method for the determination of hydrogen peroxide in atmospheric samples. Anal Chem 62:2381–2384

    Article  CAS  Google Scholar 

  23. Hanaoka S (2001) Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt (II)-ethanolamine complex immobilized on resin. Anal Chim Acta 426:57–64

    Article  CAS  Google Scholar 

  24. Shen Y, Trauble M, Wittstock G (2008) Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy. Anal Chem 80:750–759

    Article  CAS  Google Scholar 

  25. Yang J, Zhang W, Gunasekaran S (2010) An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens Bioelectron 26:279–284

    Article  CAS  Google Scholar 

  26. Ping J, Wu J, Luo X, Ying Y (2011) The use of the platinum electrode coated with ultrathin poly(allylamine hydrochloride)/Nafion films for selective detection of hydrogen peroxide. Ionics 17:443–449

    Article  CAS  Google Scholar 

  27. Mahmoudian MR, Alias Y, Basirun WJ, Moradi Golsheikh A, Jamali-Sheini F (2013) Synthesis of polypyrrole coated manganese nanowires and their application in hydrogen peroxide detection. Mater Chem Phys 141:298–303

    Article  CAS  Google Scholar 

  28. Ensafi AA, Mokhtari Abarghoui M, Rezaei B (2014b) Electrochemical determination of hydrogen peroxide using copper/porous silicon based non-enzymatic sensor. Sensors Actuators B 196:398–405

    Article  CAS  Google Scholar 

  29. Gavalas VG, Chaniotakis NA (2000) Polyelectrolyte stabilized oxidase based biosensors: effect of diethylaminoethyl-dextran on the stabilization of glucose and lactate oxidases into porous conductive carbon. Anal Chim Acta 404:67

    Article  CAS  Google Scholar 

  30. Xu G, Wang X, Chen X, Jiao L (2015) Facile synthesis and phase transition of V2O3 nanobelts. RSC Adv 5:17782–17785

    Article  CAS  Google Scholar 

  31. Wu Y, Gao G, Wu G (2015) Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J Mater Chem A 3:1828–1832

    Article  CAS  Google Scholar 

  32. Chen Y, Yang G, Zhang Z, Yang X, Hou W, Zhu JJ (2010) Polyaniline-intercalated layered vanadium oxide nanocomposites one-pot hydrothermal synthesis and application in lithium battery. Nano 2:2131–2138

    CAS  Google Scholar 

  33. Zhou XW, Wu GM, Wu JD, Yang HY, Wang JC, Gao GH, Cai R, Yan QY (2013) Multiwalled carbon nanotubes–V2O5 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries. J Mater Chem A 1:15459–15468

    Article  CAS  Google Scholar 

  34. Vijaya Sankar K, Kalai Selvan R (2015) Improved electrochemical performances of reduced graphene oxide based supercapacitor using redox additive electrolyte. Carbon 90:260–273

    Article  Google Scholar 

  35. Kuo CC, Lan WJ, Chen CH (2014) Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nano 6:334

    CAS  Google Scholar 

  36. Khan SB, Rahman MM, Asiri AM, Bin Asif SA, Al-Qarni SAS, Al-Sehemi AG, s, Al-Assiri MS (2014) Fabrication of non-enzymatic sensor using Co doped ZnO nanoparticles as a marker of H2O2. Phys E 62:21–27

    Article  CAS  Google Scholar 

  37. He S, Zhang B, Liu M, Chen W (2014) Non-enzymatic hydrogen peroxide electrochemical sensor based on a three dimensional MnO nanosheets/carbon foam composite. RSC Adv 4:49315–49323

    Article  CAS  Google Scholar 

  38. Ding J, Sun W, Wei G, Su Z (2015) Cuprous oxide microspheres on graphene nanosheets: an enhanced material for nonenzymatic electrochemical detection of H2O2 and glucose. RSC Adv 5:35338–35345

    Article  CAS  Google Scholar 

  39. Dong XX, Li MY, Feng NN, Sun YM, Yang C, Xu ZL (2015) A nanoporous MgO based nonenzymatic electrochemical sensor for rapid screening of hydrogen peroxide in milk. RSC Adv 5:86485–86489

    Article  CAS  Google Scholar 

  40. Zhang S, Sheng Q, Zheng J (2015b) Synthesis of Ag–HNTs–MnO2 nanocomposites and their application for non-enzymatic hydrogen peroxide electrochemical sensing. RSC Adv 5:26878–26885

    Article  CAS  Google Scholar 

  41. Cui S, Li Y, Deng D, Zeng L, Yan X, Qian J, Luo L (2016) Photo-reduction assisted synthesis of MnO2/reduced graphene oxide/P25 for electrochemical detection of hydrogen peroxide. RSC Adv 6:2632–2640

    Article  CAS  Google Scholar 

  42. Nia PM, Lorestani F, Meng WP, Alias Y (2015) A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nanocomposites. Appl Surf Sci 332:648–656

    Article  Google Scholar 

  43. Gong C, Shen Y, Chen J, Song Y, Chen S, Song Y, Wang L (2017) Microperoxidase-11@PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide. Sensors Actuators B 239:890–897

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and Technology, Taiwan (NSC101-2113-M-027-001-MY3 to SMC). The support offered by the National Taipei University of Technology for carrying out this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Electronic supplementary material

ESM 1

(DOCX 1372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, M., Sakthivel, M., Chen, SM. et al. A facile low-temperature synthesis of V2O5 flakes for electrochemical detection of hydrogen peroxide sensor. Ionics 23, 2193–2200 (2017). https://doi.org/10.1007/s11581-017-2046-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2046-5

Keywords

Navigation