Skip to main content
Log in

Fe3O4 quantum dots on 3D-framed graphene aerogel as an advanced anode material in lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Three-dimensional fabricated Fe3O4 quantum dots/graphene aerogel materials (Fe3O4 QDs/GA) were obtained from a facile hydrothermal strategy, followed by a subsequently heat treatment process. The Fe3O4 QDs (2–5 nm) are anchored tightly and dispersed uniformly on the surface of three-dimensional GA. The as-prepared anode materials exhibit a high reversible capacity of 1078 mAh g−1 at a current density of 100 mA g−1 after 70 cycles in lithium-ion batteries (LIBs) system. Moreover, the rate capacity still remains 536 mAh g−1 at 1000 mA g−1. The enhanced electrochemical performance is attributed to that the GA not only acts as a three-dimensional electronic conductive matrix for the fast transportation of Li+ and electrons, but also provides with double protection against the aggregation and pulverization of Fe3O4 QDs during cycling. Apparently, the synergistic effects of the three-dimensional GA and the quantum dots are fully utilized. Therefore, the Fe3O4 QDs/GA composites are promising materials as advanced anode materials for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reddy MV, Subba Rao GV, Chowdari BV (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364

    Article  CAS  Google Scholar 

  2. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938

    Article  CAS  Google Scholar 

  3. Ma JJ, Wang JL, He YS, Liao XZ, Chen J, Wang JZ, Yuan T, Ma ZF (2014) A solvothermal strategy: one-step in situ synthesis of self-assembled 3D graphene-based composites with enhanced lithium storage capacity. J Mater Chem A 2:9200

    Article  CAS  Google Scholar 

  4. Guo JX, Li FF, Sui J, Zhu HF, Zhang X (2014) Self-assembled 3D Co3O4-graphene frameworks with high lithium storage performance. Ionics 20:1635

    Article  CAS  Google Scholar 

  5. Li L, Zhou GM, Weng Z, Shan XY, Li F, Cheng HM (2014a) Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67:500

    Article  CAS  Google Scholar 

  6. Wei W, Yang SB, Zhou HX, Lieberwirth I, Feng XL, Mullen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909

    Article  CAS  Google Scholar 

  7. Wang HL, Cui LF, Yang Y, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978

    Article  CAS  Google Scholar 

  8. Li L, Kovalchuk A, Fei HL, Peng ZW, Li YL, Kim ND, Xiang CS, Yang Y, Ruan G, Tour JM (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene Nanoribbons as anode materials. Adv Energy Mater 5:1500171

    Article  Google Scholar 

  9. Ding J, Li BL, Liu YS, Yan XS, Zeng S, Zhang XD, Hou LF, Cai Q, Zhang JM (2014) Fabrication of Fe3O4@reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water. J Mater Chem A 3:832

    Article  Google Scholar 

  10. Jiang Y, Jiang ZJ, Yang LF, Cheng S, Liu ML (2015a) A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J Mater Chem A 3:11847

    Article  CAS  Google Scholar 

  11. Jiang X, Yang XL, Zhu YH, Yao YF, Zhao P, Li CZ (2015b) Graphene/carbon- coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J Mater Chem A 3:2361

    Article  CAS  Google Scholar 

  12. Hu A, Chen XH, Tang YH, Tang QL, Yang L, Zhang SP (2013) Self-assembly of Fe3O4 nanorods on graphene for lithium ion batteries with high rate capacity and cycle stability. Electrochem Commun 28:139

    Article  CAS  Google Scholar 

  13. Yang SJ, Nam S, Kim T, Im JH, Jung H, Kang JH, Wi S, Park B, Park CR (2013) Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J Am Chem Soc 135:7394

    Article  CAS  Google Scholar 

  14. Su LW, Wu XB, Zheng LH, Zheng TL, Hei JP, Wang LB, Wang YH, Ren MM (2016) Excellent lithium storage materials consisting of highly distributed Fe3O4 quantum dots on commercially available graphite nanoplates. Part Part Syst Charact 33:597

    Article  CAS  Google Scholar 

  15. Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107

    Article  CAS  Google Scholar 

  16. Li Q, Mahmood N, Zhu JH, Hou YL, Sun SH (2014b) Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9:668

    Article  CAS  Google Scholar 

  17. Zhu JX, Yang D, Yin ZY, Yan QY, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480

    Article  CAS  Google Scholar 

  18. Liu SH, Wang YW, Dong YF, Zhao ZB, Wang ZY, Qiu JS (2015) Ultrafine Fe3O4 quantum dots on hybrid carbon nanosheets for long-life. High-Rate Alkali-Metal Storage 3:38

    Google Scholar 

  19. Zhou X, Shi J, Liu Y, Su Q, Zhang J, Du G (2014) Microwave irradiation synthesis of Co3O4 quantum dots/graphene composite as anode materials for Li-ion battery. Electrochim Acta 143:175

    Article  CAS  Google Scholar 

  20. Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y, Liu S, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074

    Article  CAS  Google Scholar 

  21. Yao X, Guo GL, Ma X, Zhao Y, Ang CY, Luo Z, Nguyen KT, Li PZ, Yan QY, Zhao YL (2015) In situ integration of anisotropic SnO2 heterostructures inside three dimensional graphene aerogel for enhanced lithium storage. ACS Appl Mater Interfaces 7:26085

    Article  CAS  Google Scholar 

  22. Fan L, Li B, Rooney DW, Zhang N, Sun K (2015) In situ preparation of 3D graphene aerogels@hierarchical Fe3O4 nanoclusters as high rate and long cycle anode materials for lithium ion batteries. Chem Commun 51:1597

    Article  CAS  Google Scholar 

  23. Liu YP, Huang K, Luo H, Li HX, Qi X, Zhong JX (2014) Nitrogen-doped graphene–Fe3O4 architecture as anode material for improved Li-ion storage. RSC Adv 4:17653

    Article  CAS  Google Scholar 

  24. Chen WF, Li SR, Chen CH, Yan LF (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679

    Article  CAS  Google Scholar 

  25. Liu H, Jia MQ, Zhu QZ, Cao B, Chen RJ, Wang Y, Wu F, Xu B (2016) 3D-0D graphene-Fe3O4 quantum dot hybrids as high-PerformanceAnode materials for sodium-ion batteries. ACS Appl Mater Interfaces 8:26878

    Article  CAS  Google Scholar 

  26. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  27. Zhang M, Jia M (2013) High rate capability and long cycle stability Fe3O4–graphene nanocomposite as anode material for lithium ion batteries. J Alloys Compd 551:53

    Article  CAS  Google Scholar 

  28. Su J, Cao MH, Ren L, Hu CW (2011) Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C 115:14469

    Article  CAS  Google Scholar 

  29. Zhang M, Jia MQ, Jin YH (2012) Fe3O4/reduced graphene oxide nanocomposite as high performance anode for lithium ion batteries. Appl Surf Sci 261:298

    Article  CAS  Google Scholar 

  30. Xiao L, Wu DQ, Han S, Li S, He MZ, Zhang F, Feng XL (2013) Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl Mater Interfaces 5:3764

    Article  CAS  Google Scholar 

  31. Gong YJ, Yang SB, Liu Z, Liu Z, Ma LL, Vajtai LR, Ajayan PM (2013) Graphene-network-backboned architectures for high-performance lithium storage. Adv Mater 29:3979

    Article  Google Scholar 

  32. Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, Wu L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306

    Article  CAS  Google Scholar 

  33. Zhou Y, Liu Q, Liu DB, Xie H, Wu GX, Huang WF, Tian YF, He Q, Khalil A, Haleem YA, Xiang T, Chu WS, Zou CW, Song L (2015) Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochim Acta 174:8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengqiu Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jin, Y., Duan, Y. et al. Fe3O4 quantum dots on 3D-framed graphene aerogel as an advanced anode material in lithium-ion batteries. Ionics 23, 2005–2011 (2017). https://doi.org/10.1007/s11581-017-2044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2044-7

Keywords

Navigation