Skip to main content
Log in

Influence of charge rate on the cycling degradation of LiFePO4/mesocarbon microbead batteries under low temperature

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The lithium-ion batteries show extremely poor cycling performance at low temperature. The main degradation mechanism is not clear. To address the fading mechanism, the cycling degradation of commercial LiFePO4/mesocarbon microbead (MCMB) batteries under various charge rate (1/10C, 1/3C, 1/2C, and 1C) at −10 °C is systematically investigated using nondestructive tests combining with post-mortem analysis. The low-temperature charging under high charge rates of 1/3C, 1/2C, and 1C results in severe lithium plating, which leads to extremely serious capacity loss. In contrast, no lithium plating occurred under low charge rate of 1/10C. The lithium plating on the anode surface leads to consumption of active lithium ions and electrolyte, which causes the capacity decay and increases ohmic resistance (R b) with cycling number under high charge rates. The lithium plating on the anode surface is partially reversible, which brings about the capacity recovery of batteries after 80 cycles at 25 °C. The above results are proved by the followed post-mortem measurements. The evolution of the surface morphologies of MCMB electrodes upon cycling shows that a layer composed of rod-like lithium is formed on the anode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Verbrugge MW, Ying RY (2007) Energy vs power relationship for lithium ion cells over a broad range of temperatures and power densities. J Electrochem Soc 154(10):A949–A956

    Article  CAS  Google Scholar 

  2. Li Z, Lu LG, Ouyang MG, Xiao YK (2011) Modeling the capacity degradation of LiFePO4/graphite batteries based on stress coupling analysis. J Power Sources 196(22):9757–9766

    Article  CAS  Google Scholar 

  3. Guo HJ, Li XH, Zhang XM, Wang HQ, Wang ZX, Peng WJ (2007) Diffusion coefficient of lithium in artificial graphite, mesocarbon microbeads, and disordered carbon. New Carbon Materials 22(1):7–11

    Article  CAS  Google Scholar 

  4. Chen MH, Wu GT, Zhu GM, You JK, Lin ZG (2002) Characterization and electrochemical investigation of boron-doped mesocarbon microbead anode materials for lithium ion batteries. J Solid State Electrochem 6(6):420–427

    Article  CAS  Google Scholar 

  5. Zhao H, Liu JQ, Wang BH, Hu CQ (2013) Preparation and structures of mesocarbon microbeads. Appl Mech Mater 251:301–303

    Article  Google Scholar 

  6. Zavalis TG, Klett M, Kjell MH, Behm M, Lindstrom RW, Lindbergh G (2013) Aging in lithium-ion batteries: model and experimental investigation of harvested LiFePO4 and mesocarbon microbead graphite electrodes. Electrochim Acta 110:335–348

    Article  CAS  Google Scholar 

  7. Amine K, Liu J, Belharouak I (2005) High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochem Commun 7(7):669–673

    Article  CAS  Google Scholar 

  8. Zhang LL, Ma YL, Cheng XQ, Du CY, Guan T, Cui YZ, Sun S, Zuo PJ, Gao YZ, Yin GP (2015) Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery. J Power Sources 293:1006–1015

    Article  CAS  Google Scholar 

  9. Zhang LL, Ma YL, Cheng XQ, Cui YZ, Guan T, Gao YZ, Du CY, Yin GP, Lin F, Nordlund D (2016) Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling. J Power Sources 329:255–261

    Article  CAS  Google Scholar 

  10. Zhang SS, Xu K, Jow TR (2006) Study of the charging process of a LiCoO(2)-based Li-ion battery. J Power Sources 160(2):1349–1354

    Article  CAS  Google Scholar 

  11. Li Z, Huang J, Liaw BY, Metzler V, Zhang JB (2014) A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J Power Sources 254:168–182

    Article  CAS  Google Scholar 

  12. Yang NX, Zhang XW, Li GJ (2014) State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles. J Power Sources 272:68–78

    Article  CAS  Google Scholar 

  13. Klett M, Eriksson R, Groot J, Svens P, Hogstrom KC, Lindstrom RW, Berg H, Gustafson T, Lindbergh G, Edstrom K (2014) Non-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis. J Power Sources 257:126–137

    Article  CAS  Google Scholar 

  14. He HW, Zhang XW, Xiong R, Xu YL, Guo HQ (2012) Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 39(1):310–318

    Article  Google Scholar 

  15. Grolleau S, Delaille A, Gualous H, Gyan P, Revel R, Bernard J, Redondo-Iglesias E, Peter J, Network S (2014) Calendar aging of commercial graphite/LiFePO4 cell—predicting capacity fade under time dependent storage conditions. J Power Sources 255:450–458

    Article  CAS  Google Scholar 

  16. Wang J, Liu P, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2011) Cycle-life model for graphite-LiFePO(4) cells. J Power Sources 196(8):3942–3948

    Article  CAS  Google Scholar 

  17. Smart MC, Ratnakumar BV, Surampudi S (1999) Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates. J Electrochem Soc 146(2):486–492

    Article  CAS  Google Scholar 

  18. Smart MC, Ratnakumar BV, Surampudi S (2002) Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. J Electrochem Soc 149(4):A361–A370

    Article  CAS  Google Scholar 

  19. Smart MC, Ratnakumar BV, Chin KB, Whitcanack LD (2010) Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance. J Electrochem Soc 157(12):A1361–A1374

    Article  CAS  Google Scholar 

  20. Ji Y, Zhang YC, Wang CY (2013) Li-ion cell operation at low temperatures. J Electrochem Soc 160(4):A636–A649

    Article  CAS  Google Scholar 

  21. Zhang SS, Xu K, Jow TR (2003) The low temperature performance of Li-ion batteries. J Power Sources 115(1):137–140

    Article  CAS  Google Scholar 

  22. Zhang SS, Xu K, Jow TR (2004) Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim Acta 49(7):1057–1061

    Article  CAS  Google Scholar 

  23. Cho HM, Choi WS, Go JY, Bae SE, Shin HC (2012) A study on time-dependent low temperature power performance of a lithium-ion battery. J Power Sources 198:273–280

    Article  CAS  Google Scholar 

  24. Huang CK, Sakamoto JS, Wolfenstine J, Surampudi S (2000) The limits of low-temperature performance of Li-ion cells. J Electrochem Soc 147(8):2893–2896

    Article  CAS  Google Scholar 

  25. Lin HP, Chua D, Salomon M, Shiao HC, Hendrickson M, Plichta E, Slane S (2001) Low-temperature behavior of Li-ion cells. Electrochemical and Solid State Letters 4(6):A71–A73

    Article  CAS  Google Scholar 

  26. Kassem M, Delacourt C (2013) Postmortem analysis of calendar-aged graphite/LiFePO4 cells. J Power Sources 235:159–171

    Article  CAS  Google Scholar 

  27. Dubarry M, Liaw BY (2009) Identify capacity fading mechanism in a commercial LiFePO4 cell. J Power Sources 194(1):541–549

    Article  CAS  Google Scholar 

  28. Zhang YC, Wang CY, Tang XD (2011) Cycling degradation of an automotive LiFePO(4) lithium-ion battery. J Power Sources 196(3):1513–1520

    Article  CAS  Google Scholar 

  29. Song HS, Cao Z, Chen X, Lu H, Jia M, Zhang ZA, Lai YQ, Li J, Liu YX (2013) Capacity fade of LiFePO4/graphite cell at elevated temperature. J Solid State Electrochem 17(3):599–605

    Article  CAS  Google Scholar 

  30. Liu P, Wang J, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2010) Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J Electrochem Soc 157(4):A499–A507

    Article  CAS  Google Scholar 

  31. Zheng Y, He YB, Qian K, Li BH, Wang XD, Li JL, Miao C, Kang FY (2015) Effects of state of charge on the degradation of LiFePO4/graphite batteries during accelerated storage test. J Alloys Compd 639:406–414

    Article  CAS  Google Scholar 

  32. Han XB, Ouyang MG, Lu LG, Li JQ, Zheng YJ, Li Z (2014) A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J Power Sources 251:38–54

    Article  CAS  Google Scholar 

  33. Petzl M, Danzer MA (2014) Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries. J Power Sources 254:80–87

    Article  CAS  Google Scholar 

  34. Sarasketa-Zabala E, Aguesse F, Villarreal I, Rodriguez-Martinez LM, Lopez CM, Kubiak P (2015) Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps. J Phys Chem C 119(2):896–906

    Article  CAS  Google Scholar 

  35. Zhang SS, Xu K, Jow TR (2002) Low temperature performance of graphite electrode in Li-ion cells. Electrochim Acta 48(3):241–246

    Article  CAS  Google Scholar 

  36. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta 45(1–2):67–86

    Article  CAS  Google Scholar 

  37. Purushothaman BK, Landau U (2006) Rapid charging of lithium-ion batteries using pulsed currents—a theoretical analysis. J Electrochem Soc 153(3):A533–A542

    Article  CAS  Google Scholar 

  38. Dubarry M, Liaw BY, Chen MS, Chyan SS, Han KC, Sie WT, Wu SH (2011) Identifying battery aging mechanisms in large format Li ion cells. J Power Sources 196(7):3420–3425

    Article  CAS  Google Scholar 

  39. Dubarry M, Svoboda V, Hwu R, Liaw BY (2007) Capacity and power fading mechanism identification from a commercial cell evaluation. J Power Sources 165(2):566–572

    Article  CAS  Google Scholar 

  40. Bloom I, Christophersen JP, Abraham DP, Gering KL (2006) Differential voltage analyses of high-power lithium-ion cells—3. Another anode phenomenon. J Power Sources 157(1):537–542

    Article  CAS  Google Scholar 

  41. Bloom I, Christophersen J, Gering K (2005) Differential voltage analyses of high-power lithium-ion cells 2. Applications Journal of Power Sources 139(1–2):304–313

    Article  CAS  Google Scholar 

  42. Bloom I, Jansen AN, Abraham DP, Knuth J, Jones SA, Battaglia VS, Henriksen GL (2005) Differential voltage analyses of high-power, lithium-ion cells 1. Technique and application. J Power Sources 139(1–2):295–303

    Article  CAS  Google Scholar 

  43. Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J Electrochem Soc 140(9):2490–2498

    Article  CAS  Google Scholar 

  44. Spahr ME, Palladino T, Wilhelm H, Wursig A, Goers D, Buqa H, Holzapfel M, Novak P (2004) Exfoliation of graphite during electrochemical lithium insertion in ethylene carbonate-containing electrolytes. J Electrochem Soc 151(9):A1383–A1395

    Article  CAS  Google Scholar 

  45. Delacourt C, Poizot P, Tarascon JM, Masquelier C (2005) The existence of a temperature-driven solid solution in LixFePO4 for 0 <= x <= 1. Nat Mater 4(3):254–260

    Article  CAS  Google Scholar 

  46. Dubarry M, Truchot C, Liaw BY (2012) Synthesize battery degradation modes via a diagnostic and prognostic model. J Power Sources 219:204–216

    Article  CAS  Google Scholar 

  47. Zhang YC, Wang CY (2009) Cycle-life characterization of automotive lithium-ion batteries with LiNiO2 cathode. J Electrochem Soc 156(7):A527–A535

    Article  CAS  Google Scholar 

  48. He YB, Liu M, Huang ZD, Zhang B, Yu Y, Li BH, Kang FY, Kim JK (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276

    Article  CAS  Google Scholar 

  49. Zheng Y, He YB, Qian K, Li BH, Wang XD, Li JL, Chiang SW, Miao C, Kang FY, Zhang JB (2015) Deterioration of lithium iron phosphate/graphite power batteries under high-rate discharge cycling. Electrochim Acta 176:270–279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science and Technology Support Program (2015BAG01B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianling Li.

Electronic supplementary material

ESM 1

(DOC 7170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., He, YB., Qian, K. et al. Influence of charge rate on the cycling degradation of LiFePO4/mesocarbon microbead batteries under low temperature. Ionics 23, 1967–1978 (2017). https://doi.org/10.1007/s11581-017-2032-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2032-y

Keywords

Navigation