Advertisement

Ionics

, Volume 23, Issue 10, pp 2715–2720 | Cite as

Ab initio study of mechanical strength of solid polymer electrolyte (PEO)5LiClO4

  • Mohan L Verma
  • B. Keshav Rao
  • Rachna Singh
  • Durga Banchor
  • Homendra D Sahu
Original Paper
  • 235 Downloads

Abstract

Mechanical strength is one of the significant properties of any solid polymer electrolyte of electrochemical devices, therefore; the ab initio study based on density functional theory is performed, and the bond strength of Poly ethylene oxide (PEO)5 polymer without and with Lithium Perchlorate (LiClO4) is investigated. The central oxygen atom of PEO is displaced till to respective bond is broken along X, Y, and Z directions, respectively. The same is simulated in the presence of LiClO4 and the minimum bond breaking energy which is also called the mechanical strength is calculated along three directions. Higher energy is required in compression of (PEO)5 along x and y axes than expansion, and vice versa along z axis. The same is observed for (PEO)5-LiClO4 polymer electrolyte along x and y axes, along z direction; the energy required is nearly same for compression/expansion. Due to this energy, crystalline nature of a polymer is reduced and amorphous nature is increased. In DOS analysis, the forbidden energy gap of (PEO)5-LiClO4 is reduced by 1.0 eV than (PEO)5; it causes to increase the lithium cation concentration and the ionic conductivity.

Keywords

Density functional theory Siesta Simulation Density of states 

JEL classifications

61.43.Bn 66.10.Ed 71.15.Mb 72.80.Tm 

Notes

Acknowledgements

We gratefully acknowledge the kind support of the management of Shri Shankaracharya Technical Campus-SSGI. Helpful discussions with Prof. Ravindra Pandey (Michigan Technological University, USA) and Dr. Rodrigo Garcia Amorim (Universidade Federal Fluminense-UFF, Brazil) are acknowledged.

References

  1. 1.
    Vashishta P, Mundy JN, Shenoy GK (1979) Fast ion transport in solids: electrodes and electrolytes. Elsevier North Holland Inc, New York NYGoogle Scholar
  2. 2.
    Scrosati B (ed) (1993) Application of electro active polymers. Chapman & Hall, LondonGoogle Scholar
  3. 3.
    Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH, New YorkGoogle Scholar
  4. 4.
    MacCallum JR, Vincent CA (1989) Polymer electrolyte reviews −1. Elsevier, LondonGoogle Scholar
  5. 5.
    Soo PP, Huang B, Jang Y, Chiang Y, Sadoway DR, Mayesz AM (1999) J Electrochem Soc 146:32CrossRefGoogle Scholar
  6. 6.
    Ruzette AG, Soo PP, Sadoway DR, Mayes AM (2001) J Electrochem Soc 148:A537CrossRefGoogle Scholar
  7. 7.
    Schantz S (1991) J Chem Phys 94:6296CrossRefGoogle Scholar
  8. 8.
    Schantz S, Torell LM, Stevens JR (1991) J Chem Phys 94:6862CrossRefGoogle Scholar
  9. 9.
    Deepa M, Agnihotry S, Gupta D, Chandra R (2004) Electrochim Acta 49:373CrossRefGoogle Scholar
  10. 10.
    Ramkumar R, Sundaram MM (2016) New J Chemistry 40:2863CrossRefGoogle Scholar
  11. 11.
    Ramkumar R, Sundaram MM (2016) New J Chemistry 40:7456CrossRefGoogle Scholar
  12. 12.
    Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VVRN (2011) Physica B 406:1706CrossRefGoogle Scholar
  13. 13.
    Zardalidis G, Ioannou E, Pispas S, Floudas G (2013) Macromolecules 46:2705CrossRefGoogle Scholar
  14. 14.
    Koduru HK, Iliev MT, Kondamareddy KK, Karashanova D, Vlakhov T, Zhao XZ, Scaramuzza N (2016) J Physics: Conference Series 764:012006Google Scholar
  15. 15.
    MacCallum JR, Vincent CA (eds) (1987) Polymer electrolyte reviews. Elsevier, LondonGoogle Scholar
  16. 16.
    Bhide A, Hariharan KJ (2006) J Power Sources 159:1450CrossRefGoogle Scholar
  17. 17.
    Park CH, Kim DW, Prakash J, Sun YK (2003) Solid State Ionics 159:111CrossRefGoogle Scholar
  18. 18.
    Dey A, Karan S, De SK (2013) Indian J Pure & Applied Physics 51:281Google Scholar
  19. 19.
    Gurusiddappa J, Madhurib W, Suvarna RP, Dasan KP (2016) Materials Today: Proceedings 3:1451CrossRefGoogle Scholar
  20. 20.
    Frech R, Chintapalli S (1996) Solid State Ionics 85:61CrossRefGoogle Scholar
  21. 21.
    Kim YT, Smotkin ES (2002) Solid State Ionics 149:29CrossRefGoogle Scholar
  22. 22.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456CrossRefGoogle Scholar
  23. 23.
    Croce F, Persi LL, Scrosati B, Fiory FS, Plichta E, Hendrickson MA (2001) Electrochim Acta 46:2457CrossRefGoogle Scholar
  24. 24.
    Ribeiro R, Silva GG, Mohallem NDS (2001) Electrochim Acta 46:1679CrossRefGoogle Scholar
  25. 25.
    Scrosati B, Croce F, Persi L (2000) J Electrochem Soc 147:1718CrossRefGoogle Scholar
  26. 26.
    Nan CW, Fan L, Lin Y, Cai Q (2003) Phys Rev Lett 91:2661041CrossRefGoogle Scholar
  27. 27.
    Scrosati B, Croce F, Panero S (2001) J Power Sources 100:93CrossRefGoogle Scholar
  28. 28.
    Dissanayake MAKL, Jayathilaka PARD, Bokalawela RSP (2005) Electrochim Acta 50:5602CrossRefGoogle Scholar
  29. 29.
    Verma ML, Sahu HD (2015) J of Ionics 21:3223CrossRefGoogle Scholar
  30. 30.
    Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Solid State Ionics 11:91–95CrossRefGoogle Scholar
  31. 31.
    Ugur MH, Toker RD, Apohan NK, Gungor A (2014) Express Polym Lett 8:123CrossRefGoogle Scholar
  32. 32.
    Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, CambridgeGoogle Scholar
  33. 33.
    Zhang AL, Cao FY, Na GZ, Wang S, Li SX, Liu JC (2016) Ionics 22:2103CrossRefGoogle Scholar
  34. 34.
    Artacho E, Cela JM, Gale JD, Garcia A, Junquera J, Martin RM, Ordejon P, Portal DS and Soler JM (2011) SIESTA 3.1. Fundación General Universidad Autónoma de Madrid, MadridGoogle Scholar
  35. 35.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871CrossRefGoogle Scholar
  36. 36.
    Solar M et al (2002) J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  37. 37.
    Jaffe JE, Snyder JA, Lin Z, Hess AC (2000) Phys Rev B 62:1660CrossRefGoogle Scholar
  38. 38.
    Trouillier N, Martins JL (1991) Phys Rev B 43:1993CrossRefGoogle Scholar
  39. 39.
    Junquera J, Paz O, Portal DS, Artacho E (2001) Phys Rev B 64:235111–235111CrossRefGoogle Scholar
  40. 40.
    Shen C, Wang J, Tang Z, Wang H, Lian H, Zhang J, Cao C (2009) Electrochim Acta 54:3490CrossRefGoogle Scholar
  41. 41.
    Ahn JH, Paek Y, Shin HS, Kim YJ (2004) J Metastable and Nanocrystalline Materials 20-21:739CrossRefGoogle Scholar
  42. 42.
    Forsyth M, Macfarlane DR, Best A, Adebahr J, Jacobsson P, Hill AJ (2002) Solid State Ionics 147:203CrossRefGoogle Scholar
  43. 43.
    Stephan MA, PKumar TP, Kulandainathan MA, Lakshmi NA (2009) J Phys Chem B 113:1963CrossRefGoogle Scholar
  44. 44.
    Rao BK, Verma ML (2016) J Chemical Physics Letters 661:157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mohan L Verma
    • 1
  • B. Keshav Rao
    • 1
  • Rachna Singh
    • 2
  • Durga Banchor
    • 1
  • Homendra D Sahu
    • 1
  1. 1.Computational Nanoionics Research Lab, Department of Applied PhysicsFET-SSGI, Shri Shankaracharya Technical CampusBhilaiIndia
  2. 2.Uday Prasad Government PolytechnicDurgIndia

Personalised recommendations