Skip to main content
Log in

Tamarind seed polysaccharide (TSP)-based Li-ion conducting membranes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polysaccharide-based biopolymers have gained much attention in electrochemical devices recently. Tamarind seed polysaccharide (TSP) is a biopolymer obtained from the extract of tamarind seed. It is used as thickening and gelling agent in food and textile industries. There are no works in polymer electrolytes based on TSP in lithium-ion conducting membranes. A pure TSP membrane has been prepared by dissolving 1 g of TSP in distilled water by using solution-casting technique. The prepared biopolymer membranes are subjected to Fourier transform infrared (FTIR), X-ray diffraction (XRD), and AC-impedance techniques. FTIR analysis has been conducted to observe the possible interaction between the polymer and lithium salt based upon the changes in wave numbers of the peaks. The nature of the membrane (crystalline or amorphous) has been revealed by XRD. The electrical properties of the membranes have been analyzed by AC-impedance spectroscopy. The maximum ionic conductivity for the salt-doped membrane 1 g TSP:0.4 g lithium bromide (LiBr) has been found to be 4.83 × 10−4 S cm−1. The primary lithium-ion battery has been constructed using the best conductivity membrane, and the open circuit voltage (OCV) has been observed as 1.63 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688–6694

    Article  CAS  Google Scholar 

  2. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429

    Article  CAS  Google Scholar 

  3. Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet JP, Trang NTP, Bertin D, Gigmes D, Devaux D (2013) Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12:452–457

    Article  CAS  Google Scholar 

  4. Denoyel R, Armand M, Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569

    Article  Google Scholar 

  5. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540

    Article  CAS  Google Scholar 

  6. Smith DM, Dong B, Marron RW, Birnkrant MJ, Elabd YA, Natarajan LV, Tondiglia VP, Bunning TJ, Li CY (2011) Tuning ion conducting pathways using holographic polymerization. NanoLett 12:310–314

    Article  Google Scholar 

  7. Rajeswari N, Selvasekarapandian S, Karthikeyan S, Nithya H, Sanjeeviraja C (2012) Lithium ion conducting polymer electrolyte based on poly (vinyl alcohol)–poly (vinyl pyrrolidone) blend with LiClO4. Int J Polym Mater Polym Biomaterial 61(14):1164–1175

    Article  CAS  Google Scholar 

  8. Huang B, Wang Z, Li G, Huang H, Xue R, Chen L, Wang F (1996) Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ionics 85:79–84

    Article  CAS  Google Scholar 

  9. Francis KMG, Subramanian S, Shunmugavel K, Naranappa V, Pandian SSM, Nadar SC (2016) Lithium ion-conducting blend polymer electrolyte based on PVA–PAN doped with lithium nitrate. Polym-Plast Technol Eng 55:25–35

    Article  CAS  Google Scholar 

  10. Majid SR, Arof AK (2005) Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Phys B Condens Matter 355:78–82

    Article  CAS  Google Scholar 

  11. Azizi Samir MAS, Chazeau L, Alloin F, Cavaillé J-Y, Dufresne A, Sanchez J-Y (2005) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim Acta 50:3897–3903

    Article  CAS  Google Scholar 

  12. Ahmad Khiar AS, Arof AK (2010) Electrical properties of starch/chitosan-NH4NO3 polymer electrolyte. Ionics 16:123–129

    Article  Google Scholar 

  13. Osman Z, Ibrahim ZA, Arof AK (2001) Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Carbohydr Polym 44:167–173

    Article  CAS  Google Scholar 

  14. Andrade JR, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54:6479–6483

    Article  CAS  Google Scholar 

  15. Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) Agar based films for application as polymer electrolytes. Electrochim Acta 55:1455–1459

    Article  CAS  Google Scholar 

  16. Dragunski DC, Pawlicka A (2002) Starch based solid polymeric electrolytes. Mol Cryst Liq Cryst 374:561–568

    Article  CAS  Google Scholar 

  17. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  18. Hashmi SA, Kumar A, Maurya KK, Chandra S (1993) Proton-conducting polymer electrolyte. I. The polyethylene oxide + NH4ClO4 system. J Phys D Appl Phys 23:1307

    Article  Google Scholar 

  19. Boukamp BA (1986) A non-linear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  20. Rajendran S, Uma T (2000) Experimental investigations on PVC–LiAsF6–DBP polymer electrolyte systems. J Power Sources 87:218–222

    Article  CAS  Google Scholar 

  21. Chiam-Wen L, Ramesh S, Ramesh K, Arof AK (2012) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16:1869–1875

    Article  Google Scholar 

  22. Premalatha M, Vijaya N, Selvasekarapandian S, Selvalakshmi S (2016) Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22(8):1299–1310

    Article  CAS  Google Scholar 

  23. Aziz NAN, Idris NK, Isa MIN (2010) Proton conducting polymer electrolytes of methylcellulose doped ammonium fluoride: conductivity and ionic transport studies. J PhysSci 5:748–752

    Google Scholar 

  24. Agrawal RC, Hashmi SA, Pandey GP (2007) Electrochemical cell performance studies on all-solid-state battery using nano-composite polymer electrolyte membrane. Ionics 13:295–298

    Article  CAS  Google Scholar 

  25. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Prema Latha M (2016) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics. doi:10.1007/s11581-016-1886-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Mathavan or S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premalatha, M., Mathavan, T., Selvasekarapandian, S. et al. Tamarind seed polysaccharide (TSP)-based Li-ion conducting membranes. Ionics 23, 2677–2684 (2017). https://doi.org/10.1007/s11581-017-1989-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1989-x

Keywords

Navigation