Skip to main content

Advertisement

Log in

Ionic liquid-based electrolyte with dual-functional LiDFOB additive toward high-performance LiMn2O4 batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Manganese oxide-based cathodes are one of the most promising lithium-ion battery (LIB) cathode materials due to their cost-effectiveness, high discharge voltage plateau (above 4.0 V vs. Li/Li+), superior rate capability, and environmental benignity. However, these batteries using conventional LiPF6-based electrolytes suffer from Mn dissolution and poor cyclic capability at elevated temperature. In this paper, the ionic liquid (IL)-based electrolytes, consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfon)imidate (PYR1,4-TFSI), propylene carbonate (PC), lithium bis(trifluoromethanesulfon)imide (LiTFSI), and lithium oxalyldifluoroborate (LiDFOB) additive, were explored for improving the high temperature performance of the LiMn2O4 batteries. It was demonstrated that LiTFSI-ILs/PC electrolyte associated with LiDFOB addition possessed less Mn dissolution and Al corrosion at the elevated temperature in LiMn2O4/Li batteries. Cyclic voltammetry and electrochemical impedance spectroscopy implied that this kind of electrolyte also contributed to the formation of a highly stable solid electrolyte interface (SEI), which was in accordance with the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. Cyclic voltammetry and electrochemical impedance spectroscopy implied that the cells using this kind of electrolyte exhibited better interfacial stability, which was further verified by the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. These unique characteristics would endow this kind of electrolyte a very promising candidate for the manganese oxide-based batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) J Am Chem Soc 135:1167

    Article  CAS  Google Scholar 

  2. Ritchie A, Howard W (2006) J Power Sources 162:809

    Article  CAS  Google Scholar 

  3. Dunn B, Kamath H, Tarascon J-M (2011) Science 334:928

    Article  CAS  Google Scholar 

  4. Thackeray MM, Wolverton C, Isaacs ED (2012) Energy Environ. Sci. 5:7854

    Article  CAS  Google Scholar 

  5. Bresser D, Passerini S, Scrosati B (2013) Chem Commun 49:10545

    Article  CAS  Google Scholar 

  6. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Nat Mater 11:19

    Article  CAS  Google Scholar 

  7. A. M, Tarascon J-M (2001) Nature 414:9

    Google Scholar 

  8. Scrosati B, Garche J (2010) J Power Sources 195:2419

    Article  CAS  Google Scholar 

  9. Scrosati B, Hassoun J, Sun Y-K (2011) Energy Environ. Sci. 4:3287

    Article  CAS  Google Scholar 

  10. Sun Y-K, Lee Y-S, Yoshio M, Amine K (2002) Electrochem Solid-State Lett 5:A99

    Article  CAS  Google Scholar 

  11. Ammundsen B, Paulsen J (2001) Adv Mater 13:943

    Article  CAS  Google Scholar 

  12. Desilvestro J, Haas O (1990) J Electrochem Soc 137:5C

    Article  CAS  Google Scholar 

  13. Qin B, Liu Z, Ding G, Duan Y, Zhang C, Cui G (2014) Electrochim Acta 141:167

    Article  CAS  Google Scholar 

  14. Xu G, Liu Z, Zhang C, Cui G, Chen L (2015) J Mater Chem A 3:4092

    Article  CAS  Google Scholar 

  15. Botte GG, White RE, Zhang Z (2001) J Power Sources 97–98:570

    Article  Google Scholar 

  16. Kawamura T, Okada S, Yamaki J-i (2006) J Power Sources 156:547

    Article  CAS  Google Scholar 

  17. Sun Y-K, Myung S-T, Park B-C, Prakash J, Belharouak I, Amine K (2009) Nat Mater 8:320

    Article  CAS  Google Scholar 

  18. Hu P, Duan Y, Hu D, Qin B, Zhang J, Wang Q, Liu Z, Cui G, Chen L (2015) ACS Appl Mat Interfaces 7:4720

    Article  CAS  Google Scholar 

  19. Shin J-H, Henderson WA, Passerini S (2003) Electrochem Commun 5:1016

    Article  CAS  Google Scholar 

  20. Gebresilassie Eshetu G, Armand M, Scrosati B, Passerini S (2014) Angew Chem Int Ed 53:13342

    Article  CAS  Google Scholar 

  21. Kühnel RS, Böckenfeld N, Passerini S, Winter M, Balducci A (2011) Electrochim Acta 56:4092

    Article  Google Scholar 

  22. Kühnel R-S, Balducci A (2014) J Phys Chem C 118:5742

    Article  Google Scholar 

  23. Kühnel R-S, Lübke M, Winter M, Passerini S, Balducci A (2012) J Power Sources 214:178

    Article  Google Scholar 

  24. Gao X-W, Feng C-Q, Chou S-L, Wang J-Z, Sun J-Z, Forsyth M, MacFarlane DR, Liu H-K (2013) Electrochim Acta 101:151

    Article  CAS  Google Scholar 

  25. Swiderska-Mocek A (2014) J Solid State Electrochem 18:1077

    Article  CAS  Google Scholar 

  26. Wongittharom N, Lee T-C, Hung IM, Lee S-W, Wang Y-C, Chang J-K (2014) J Mater Chem A 2:3613

    Article  CAS  Google Scholar 

  27. Hofmann A, Werth F, Howeling A, Hanemann T (2015) ECS Electrochem Lett 4:A141

    Article  CAS  Google Scholar 

  28. Xu K (2004) Chem Rev 104:116

    Article  Google Scholar 

  29. Qin B, Liu Z, Zheng J, Hu P, Ding G, Zhang C, Zhao J, Kong D, Cui G (2015) J Mater Chem A 3:7773

    Article  CAS  Google Scholar 

  30. Menne S, Kühnel RS, Balducci A (2013) Electrochim Acta 90:641

    Article  CAS  Google Scholar 

  31. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) J Power Sources 195:7904

    Article  CAS  Google Scholar 

  32. Park K, Yu S, Lee C, Lee H (2015) J Power Sources 296:197

    Article  CAS  Google Scholar 

  33. Miao R, Yang J, Feng X, Jia H, Wang J, Nuli Y (2014) J Power Sources 271:291

    Article  CAS  Google Scholar 

  34. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Energy Environ Sci 7:513

    Article  CAS  Google Scholar 

  35. Lu Y, Xu S, Shu J, Aladat WIA, Archer LA (2015) Electrochem Commun 51:23

    Article  Google Scholar 

  36. Leroy S, Martinez H, Dedryvere R, Lemordant D, Gonbeau D (2007) App Surf Sci 253:4895

    Article  CAS  Google Scholar 

  37. Choudhury S, Archer LA (2016) Adv Electron Mater 2:1500246

    Article  Google Scholar 

  38. Chen Z, Qin Y, Liu J, Amine K (2009) Electrochem Solid-State Lett 12:A69

    Article  CAS  Google Scholar 

  39. Xu M, Zhou L, Hao L, Xing L, Li W, Lucht BL (2011) J Power Sources 196:6794

    Article  CAS  Google Scholar 

  40. Xia Y, Zhou Y, Yoshio M (1997) J Electrochem Soc 144:2593

    Article  CAS  Google Scholar 

  41. Lu D, Li W, Zuo X, Yuan Z, Huang Q (2007) J Phys Chem C 111:12067

    Article  CAS  Google Scholar 

  42. Levi MD, Aurbach D (1997) J Phys Chem B 101:4630

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Program on the National High Technology Research and Development Program of China (863 program, No. 2013AA050905), Key Project of Natural Science Foundation of Shandong Province (ZR2015QZ01), “135” Projects Fund of CAS-QIBEBT Director Innovation Foundation, and Qingdao Institute of Bioenergy and Bioprocess Technology Director Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihong Liu or Guanglei Cui.

Additional information

Bingsheng Qin and Shu Zhang contributed equally to this work.

Electronic supplementary material

.

ESM 1

(DOCX 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, B., Zhang, S., Hu, Z. et al. Ionic liquid-based electrolyte with dual-functional LiDFOB additive toward high-performance LiMn2O4 batteries. Ionics 23, 1399–1406 (2017). https://doi.org/10.1007/s11581-016-1966-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1966-9

Keywords

Navigation