, Volume 23, Issue 6, pp 1563–1567 | Cite as

Modeling of space charge dielectric constant

  • B. Keshav RaoEmail author
  • Mohan L Verma
Original Paper


The space charge polarization/depolarization is considered, and to relate the geometrical arrangement of constitutive phases to the dielectric response, three space charge dielectric constants, viz., trapped space charge dielectric constant ε t, drift space charge dielectric constantε d and dielectric constant ε are modeled. It is observed that the order of ε t is same for AgI and 0.9[0.75AgI:0.25AgCl]:0.1SiO2 nanocomposite in β− and α−phases. In β− phase, ε d and ε are 10 times larger and 10 times smaller in the second system of respective β− and α−phases. In β− phase, the ionic concentration provides the main contribution to the dielectric response of both systems, and in α− phase, the ionic mobility has the main contribution to the dielectric nature.


Modeling Space charge depolarization Space charge dielectric constant Transports properties 



We gratefully acknowledge the kind support of the management of the Shri Shankaracharya Group of Institutions (SSTC) and helpful discussion with Prof. Ravindra Pandey (MTU, USA).


  1. 1.
    Chandra S (1981) Super ionic solids: principles and applicationsGoogle Scholar
  2. 2.
    Laskar AL and Chandra S (eds.) (1989) Superionic solids and solid electrolytesGoogle Scholar
  3. 3.
    Bruce PG (eds.) (1995) Solid state electrochemistryGoogle Scholar
  4. 4.
    Agrawal RC, Verma ML and Gupta RK (1998) J Phys D Appl Phys 31:2854Google Scholar
  5. 5.
    Agrawal RC, Gupta RK and Verma ML (1998) J Ionics 4:33Google Scholar
  6. 6.
    Agrawal RC, Verma ML and Gupta RK (1999) Indian J Pure & Appl Phys 37:334Google Scholar
  7. 7.
    Agrawal RC, Verma ML, Gupta RK and Thaker S (2000) Solid State Ionics 136:473Google Scholar
  8. 8.
    Verma ML and Rao BK (2011) J Ionics 17:323Google Scholar
  9. 9.
    Verma ML and Rao BK (2014) J Ionics 20:697Google Scholar
  10. 10.
    Agrawal RC, Chandra A, Bhatt A and Mahipal YK (2007) J Phys D: Appl Phys 40:4714Google Scholar
  11. 11.
    Agrawal RC, Chandra A, Bhatt A and Mahipal YK (2008) Eur Phys J Appl Phys 43:209Google Scholar
  12. 12.
    Rao BK and Verma ML (2016) Chemical Physics 478:87Google Scholar
  13. 13.
    Rao BK and Verma ML (2016) J Chemical Physics Letters 661:157Google Scholar
  14. 14.
    Verma ML (2000) Ph. D. Thesis Pt Ravishankar Shukla Univ RaipurGoogle Scholar
  15. 15.
    Rao BK and Verma ML (2015) J Ionics 21:611Google Scholar
  16. 16.
    Shahi K, Wagner JB (1982) J of Solid State Chemistry 42(2):107Google Scholar
  17. 17.
    Maier J (1989) In: Laskar AL and Chandra S (eds). Academic Press New York, 137Google Scholar
  18. 18.
    Agrawal RC, Gupta RK (1999) J Mater Sci 34:1131Google Scholar
  19. 19.
    Maekawa H, Tanaka R, Sato T, Fujimaki Y, Yamamura T (2004) Solid State Ionics 175(1–4):281Google Scholar
  20. 20.
    Maekawa H, Fujimaki Y, Shen H, Kawamura J, Yamamura T (2006) Solid State Ion 177(26–32):2711Google Scholar
  21. 21.
    Yamada H, Moriguchi I, Kudo T (2005) Solid State Ionics 176(9–10):945Google Scholar
  22. 22.
    Maier J (2005) Nat Mater 4(11):805Google Scholar
  23. 23.
    Uvarov NF (2007) Russ Chem Rev 76:415Google Scholar
  24. 24.
    Yaroslavtsev AB (2010) J of General Chemistry 80(3):675Google Scholar
  25. 25.
    Uvarov NF, Ponomareva VG, Lavrova GV (2010) J of Electrochemistry 46(7):722Google Scholar
  26. 26.
    Jow T and Wagner J B Jr (1979) J Electrochem Soc 126:1963Google Scholar
  27. 27.
    Maier J (1985) J Phys Chem Solids 46:309Google Scholar
  28. 28.
    Dudney NJ (1985) J Am Ceram Soc 68:538Google Scholar
  29. 29.
    Bunde A, Dieterich W and Roman E (1985) Phys Rev Lett 55:5Google Scholar
  30. 30.
    Uvarov NF, Isupov VP, Sharma V and Shukla AK (1992) Solid State Ionics 51:41Google Scholar
  31. 31.
    Shaju KM and Chandra S (1995) J Mater Sci 30:3457Google Scholar
  32. 32.
    Subramanian MA, Li D, Duan N, Reisner BA, Sleight AW (2000) J Solid State Chem 151:323.Google Scholar
  33. 33.
    Adams TB, Sinclair DC and West AR (2002) Adv Mater 14:1321Google Scholar
  34. 34.
    Chen L and Chen CL (2003) Appl Phys Lett 82:2317Google Scholar
  35. 35.
    Kretly LC, Almeida AFL, Oliveira RS, Sasaki JM and Sombra ASB (2003) Microwave Opt Technol Lett 39:145Google Scholar
  36. 36.
    Briz V, Gruenera G, Wolfman J, Fatyeyevac K, Tabelloutc M, Gervaisa M and Gervais F (2006) Materials Science and Engineering B 129:135Google Scholar
  37. 37.
    Thomas P, Varughese KT, Dwarakanath K, Varma KBR (2010) Composites Science and Technology 70:539Google Scholar
  38. 38.
    Frenning G and Stromme M (2011) J Appl Phys 90:11Google Scholar
  39. 39.
    Jackson JD (1975) Classical electrodynamics 2nd edn Wiley New YorkGoogle Scholar
  40. 40.
    Verma ML, Agrawal RC and Mukherjee Mimi (2006) Radiation effects and defects in solids 161:225Google Scholar
  41. 41.
    Kanazawa K, Batra IP and Wintle HJ (1972) J Appl Phys 43:719Google Scholar
  42. 42.
    Rao BK (2014) Ph. D. Thesis Chhattisgarh Swami Vivekanand Technical Univ BhilaiGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsShri Shankaracharya Group of Institutions-SSTCBhilaiIndia

Personalised recommendations