Skip to main content
Log in

Li+ ion conductivity and transport properties of LiYP2O7 compound

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A lithium yttrium diphosphate LiYP2O7 was prepared by a solid-state reaction method. Rietveld refinement of the X-ray diffraction pattern suggests the formation of the single phase desired compound with monoclinic structure at room temperature. The infrared and Raman spectrum of this compound was interpreted on the basis of P2O7 4− vibrations. The AC conductivity was measured in the frequency range from 100 to 106 Hz and temperatures between 473 and 673 K using impedance spectroscopy technique. The obtained results were analyzed by fitting the experimental data to the equivalent circuit model. The Cole–Cole diagram determined complex impedance for different temperatures. The angular frequency dependence of the AC conductivity is found to obey Jonscher’s relation. The temperature dependence of σ AC could be described in terms of Arrhenius relation with two activation energies, 0.87 eV in region I and 1.36 eV in region II. The study of temperature variation of the exponent(s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the correlated barrier hopping (CBH) model in region I (T < 540 K) and non-overlapping small polaron tunneling (NSPT) model in region II (T > 540 K). The near value of activation energies obtained from the equivalent circuit and DC conductivity confirms that the transport is through ion hopping mechanism dominated by the motion of the Li+ ion in the structure of the investigated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rodger AR, Kuwano J, West AR (1985) Solid State Ionics 15:185

    Article  CAS  Google Scholar 

  2. Louati B, Guidara K, Gargouri M (2009) J. Alloy. Comp. 472:347

    Article  CAS  Google Scholar 

  3. Louati B, Guidara K (2012) Mat Sci Eng B 177:838

    Article  CAS  Google Scholar 

  4. Hong HY-P (1978) Mat Res Bull 13:117

    Article  CAS  Google Scholar 

  5. Robert G, Malugani JP, Saida A (1981) Solid State lonics 4:311

    Article  Google Scholar 

  6. Hiroshi F, Hideyuki M, Shoji Y (2003) Mater Res Bull 38 : 991 

  7. Zaafouri A, Megdiche M, Gargouri M (2014) J. Alloy. Comp. 584:152

    Article  CAS  Google Scholar 

  8. Marwa K, Makram M, Kamel G, Mohamed G (2015) Ionics 21:935 

  9. Pang R, Li C, Jiang L, Su Q (2009) J Alloys Compd 471:364

    Article  CAS  Google Scholar 

  10. Louati B, Hlel F, Guidara K (2009) J Alloy Comp 486:299

    Article  CAS  Google Scholar 

  11. Daidouh A, Veiga ML, Pico C, Martinez-Ripoll M (1997) Acta Cryst. C 53:167

    Google Scholar 

  12. Prabaharan SRS, Michael MS, Radhakrishna S, Julien C (1997) J Mater Chem 7:1791

    Article  CAS  Google Scholar 

  13. Nasri S, Megdiche M, Guidara K, Gargouri M (2013) Ionics 10:969

    Google Scholar 

  14. Mahamoud H, Louati B, Hlel F, Guidara K (2011) Bull Mater Sci 1069:34

    Google Scholar 

  15. Kuhlmann U, Thomsen C, Prokoviev AV, Bullesfeld F, Uhrig E, Assmus W (2001) Physica B 27:301

    Google Scholar 

  16. Mahesh MJ, Gopalakrishna GS, Ashamanjari KG (2007) Mater Sci Semicond Process 10:117

    Article  CAS  Google Scholar 

  17. Khay N, Ennaciri A, Harcharras M (2001) Vibrational Spectrosc 27:119

    Article  CAS  Google Scholar 

  18. Khay N, Ennaciri A (2001) J. Alloy. Compd. 800:323

    Google Scholar 

  19. Sen S, Choudhary RNP, Pramanik P (2007) Physica B 387:56

    Article  CAS  Google Scholar 

  20. HaittaoYe Sun C, Hung H, Hing P (2001) Thin Solid Films 38:152

    Google Scholar 

  21. Ye H, Sun C, Hung H, Hing P (2001) Appl Phys Lett 78:1826

    Article  CAS  Google Scholar 

  22. M’Peko JC, Spavieri DL, Souza MF (2002) Appl Phys Lett 81:2827

    Article  Google Scholar 

  23. Nasri S, Megdiche M, Gargouri M (2016) Ceram Int 42:943

  24. Ram M (2010) Phys B: Phys Cond Matter 405:602

    Article  CAS  Google Scholar 

  25. Kumar A, Singh BP, Choudhary RNP, Thakur AK (2006) Mater Chem Phys 99:150

    Article  CAS  Google Scholar 

  26. Valente MA, Peres M, Nico C, Monteiro T, Graça MPF, Sombra ASB, Silva C (2011) Opti Mat 33:1964

    Article  CAS  Google Scholar 

  27. Mahamoud H, Louati B, Hlel F, Guidara K (2011) J. Alloy. Compd. 509:6083

    Article  CAS  Google Scholar 

  28. Jonscher AK (1977) Nature 267:673

    Article  CAS  Google Scholar 

  29. Dyre JC, Schroder TB (2000) Rev Mod Phys 72:873

    Article  Google Scholar 

  30. Pike G (1972) Phys Rev B 6:1572

    Article  CAS  Google Scholar 

  31. Ben Bechir M, Karoui K, Tabellout M, Guidara K, Rhaiem AB (2014) J. Alloy. Comp. 588:551

    Article  CAS  Google Scholar 

  32. Ghosh A (1990) Phys Rev B 42:5665

    Article  CAS  Google Scholar 

  33. Ben Taher Y, Oueslati A, Maaloul NK, Khirouni K, Gargouri M (2015) Appl Phys A Mater Sci Process 393:9353

    Google Scholar 

  34. Bechir M, Karou K, Tabellout M, Guidara K, Rhaiem A (2014) J. Alloy. Comp. 588:551

    Article  Google Scholar 

  35. Sassi M, Bettaibi A, Oueslati A, Khirouni K, Gargouri M (2015) J. Alloy. Comp. 649:642

  36. Ben Gzaiel M, Oueslati A, Gargouri M (2015) J Clust Sci 3:852

    Google Scholar 

  37. Ben Taher Y, Oueslati A, Khirouni K, Gargouri M (2015) J Clust Sci 26:1655

    Article  CAS  Google Scholar 

  38. Ben Taher Y, Oueslati A, Khirouni K, Gargouri M (2016) Mater Res Bul 78:148

    Article  CAS  Google Scholar 

  39. Afifi MA, Hegab NA, Bekheat AE (1995) Vacuum 46:335

    Article  CAS  Google Scholar 

  40. Khan GA, Hogarth CA (1991) J Mater Sci 26:17

    Article  CAS  Google Scholar 

  41. Yakuphanoglu F, Yahia IS, Senkal BF, Sakr GB, Farooq WA (2011) Synth Met 161:817

    Article  CAS  Google Scholar 

  42. Elliott SR (1987) Adv Phys 36:135

    Article  CAS  Google Scholar 

  43. Kahouli A, Sylvestre A, Jomni F, Yangui B, Legrand (2012) J Phys Chem A116:1051

    Article  Google Scholar 

  44. Murawski L, Chung CH, Mackenzie JD (1979) J Non-Cryst Solids 32:91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oueslati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oueslati, A. Li+ ion conductivity and transport properties of LiYP2O7 compound. Ionics 23, 857–867 (2017). https://doi.org/10.1007/s11581-016-1878-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1878-8

Keywords

Navigation