Skip to main content
Log in

High-temperature complex impedance and modulus spectroscopic studies of doped Na0.5Bi0.5TiO3-BaTiO3 ferroelectric ceramics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 − x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 − y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  CAS  Google Scholar 

  2. Sharma DK, Kumar N, Sharma S, Rai R (2013) Effect of BaTiO3 additive on the electrical properties of Na0.5Bi0.5TiO3 lead free ceramics. Mater Chem Phys 141:145

    Article  CAS  Google Scholar 

  3. Yi JK, Lee J-K, Hong K-S (2004) Dependence of the microstructure and the electrical properties of lanthanum substituted (Na1/2Bi1/2)TiO3 on cation vacancies. J Amer Ceram Soc 85:3004–3010

    Article  Google Scholar 

  4. Cho JH, Jeong YH, Nam JH, Yun JS, Park YJ (2014) Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2)TiO3-BaTiO3 ceramics. Ceram Int 40:8419–8425

    Article  CAS  Google Scholar 

  5. Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition. Sov Phys Solid State 2:2651–2654

    Google Scholar 

  6. Suchanicz J, Kruzina TV (2013) Dielectric properties, thermal expansion and heat capacity of (1-x)(Na0.5Bi0.5)TiO3–xBaTiO3 single crystals (x = 0.02, 0.025, 0.0325 and 0.05). Mater Sci Eng B 178:889–895

    Article  CAS  Google Scholar 

  7. Barick BK, Choudhary RNP, Pradhan DK (2012) Phase transition and electrical properties of lanthanum-modified sodium bismuth titanate. Mater Chem Phys 132:1007–1014

    Article  CAS  Google Scholar 

  8. Raghavender M, Kumar GS, Prasad G (2009) A-site substitution-controlled dielectric dispersion in lead-free sodium bismuth titanate. Pramana J Phys 72:999–1009

    Article  CAS  Google Scholar 

  9. Zannen M, Lahmar A, Dietze M, Khemakhem H, Kabadou A, Es-Souni M (2012) Structural, optical, and electrical properties of Nd-doped Na0.5Bi0.5TiO3. Mater Chem Phys 134:829–833

    Article  CAS  Google Scholar 

  10. Zannen M, Khemakhem H, Kabadou A, Es-Souni M (2013) Structural, Raman and electrical studies of 2 at% Dy-doped NBT. J Alloys Compd 555:56–61

    Article  CAS  Google Scholar 

  11. West DL, Payne DA (2003) Preparation of 0.95Bi1/2Na1/2TiO3-0.05BaTiO3 ceramics by an aqueous citrate-gel route. J. Amer. Ceram. Soc 86:192–194

    Article  CAS  Google Scholar 

  12. Pookmanee P, Rujijanagul G, Ananta S, Heimann RB, Phanichphant S (2004) Effect of sintering temperature on microstructure of hydrothermally prepared bismuth sodium titanate ceramics. J Eur Ceram Soc 24:517–520

    Article  CAS  Google Scholar 

  13. Chen M, Xu Q, Kim BH, Ahn BK, Ko JH, Woo Jin Kang O, Nam J (2008) Structure and electrical properties of (Na0.5Bi0.5)1-x-BaxTiO3 piezoelectric ceramics. J Eur Ceram Soc 28:843–849

    Article  Google Scholar 

  14. Cernea M, Andronescu E, Radu R, Fochi F, Galassi C (2010) Sol-gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J Alloys Compd 490:690

    Article  CAS  Google Scholar 

  15. Zhao ML, Wang CL, Zhong WL, Wang JF, Chen HC (2003) Dielectric and piezoelectric behaviors of NBT-BT0.05 processed by sol–gel method. Acta Phys Sin-Chin Ed 52:229

  16. Cernea M, Galassi C, Vasile BS, Capiani C, Berbecaru C, Pintilie I, Pintilie L (2012) Structural, dielectric, and piezoelectric properties of fine-grained NBT-BT0.11 ceramic derived from gel precursor. J Eur Ceram Soc 32:2389–2397

    Article  CAS  Google Scholar 

  17. Sameera Devi C, Vithal M, Kumar GS, Prasad G (2011) Effect of simultaneous double doping in Ba and Ti sites on dielectric and ferroelectric properties of sol-gel synthesized nano-BaTiO3. J Mater Sci Mater Electron 22:1855–1859

    Article  CAS  Google Scholar 

  18. Sameera Devi C, Kumar GS, Prasad G (2013) Control of ferroelectric phase transition in nano particulate NBT-BT based ceramics. Mater Sci and Eng B 178:283–292

    Article  Google Scholar 

  19. Vijayeta P, Dwivedi RK, Thakur OP (2014) Effect of neodymium substitution on structural and ferroelectric properties of BNT ceramics. Mater Res Bull 51:189–196

    Article  Google Scholar 

  20. Kim JS (2001) Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J Phys Soc Jpn 70:3129–3123

    Article  CAS  Google Scholar 

  21. Liu J, Duan CG, Yin WG, Mei WN, Smith RW, Hardy JR (2003) Dielectric permittivity and electric modulus in Bi2Ti4O11. J Chem Phys 119:2812–2819

    Article  CAS  Google Scholar 

  22. Dwivedi RK, Kumar D, Prakash O (2001) Valence compensated perovskite oxide system Ca1-xLaxTi1-xCrxO3; part-III: impedance spectroscopy. J Mater Sci 36:3657–3665

    Article  CAS  Google Scholar 

  23. Macedo PB, Moynihan CT, Bose R (1972) Dielectric modulus: experiment, application, and interpretation. J Phy Chem Glasses 13:171

  24. Lin M, Oki T, Bengtsson M, Kanae S, Holloway T, Streets DG (2008) Atmos Environ 42:5956

    Article  CAS  Google Scholar 

  25. Ahmad MM, Yamane Y, Yamada K (2009) Structure, ionic conduction and giant dielectric properties of mechanochemically synthesized BaSnF4. J Appl Phys 106:074106

    Article  Google Scholar 

  26. Srivastava A, Garg A, Morrison FD (2009) Impedance spectroscopic studies on polycrystalline BiFeO3 thin films on Pt/Si substrates. J Appl Phy 105:054103

    Article  Google Scholar 

  27. Macdonald JR (1987) Impedance spectroscopy. John Wiley & Sons, Inc., p 34

  28. Chen H, Yang C, Zhang J, Wang B, Ji H (2009) Electrical behavior of BaZr0.1Ti0.9O3 and BaZr0.2Ti0.8O3 thin films. Appl Sur Sci 255:4585–4589

    Article  CAS  Google Scholar 

  29. Shannon D (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751

  30. Scott HG (1975) Phase-relationships in the zirconia-yttria system. J Mater Sci 10:1527–1535

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology (DST), New Delhi, India, for providing the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, C.S., Suresh, M.B., Kumar, G.S. et al. High-temperature complex impedance and modulus spectroscopic studies of doped Na0.5Bi0.5TiO3-BaTiO3 ferroelectric ceramics. Ionics 22, 2363–2377 (2016). https://doi.org/10.1007/s11581-016-1781-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1781-3

Keywords

Navigation