Advertisement

Ionics

, Volume 22, Issue 11, pp 2133–2142 | Cite as

Conductivity studies of poly(ethylene oxide)(PEO)/poly(vinyl alcohol) (PVA) blend gel polymer electrolytes for dye-sensitized solar cells

  • T. S. Tiong
  • M. H. BuraidahEmail author
  • L. P. Teo
  • A. K. Arof
Original Paper

Abstract

Poly(ethylene oxide)(PEO)–poly(vinyl alcohol) (PVA) blend-based gel polymer electrolytes (GPEs) have been prepared by blending equal weights of PEO and PVA in ethylene carbonate (EC), dimethyl sulfoxide (DMSO), tetrabutylammonium iodide (TBAI), and iodine crystals (I2). The conductivity, diffusion coefficient, number density, and ion mobility of the electrolytes have been calculated from the impedance data obtained from electrochemical impedance spectroscopy (EIS) measurements. The GPE with the composition of 7.02 wt%, PVA, 7.02 wt% PEO, 30.11 wt% ethylene carbonate (EC), 30.11 wt% DMSO, 24.08 wt% TBAI and 1.66 wt% I2 exhibits the highest conductivity of 5.5 mS cm−1 at room temperature. Dye-sensitized solar cells (DSSCs) with configuration fluorine tin oxide (FTO)/titanium dioxide/N3-dye/GPE/platinum/FTO have been fabricated and tested under the white light of intensity 100 mW cm−2. The DSSC containing the highest conducting GPE exhibits the highest power conversion efficiency, η of 5.36 %.

Keywords

Poly(ethylene oxide) (PEO) Poly(vinyl alcohol) (PVA) Gel polymer electrolyte Dye-sensitized solar cells 

Notes

Acknowledgments

The authors would like to thank the Ministry of Higher Education for the FRGS grant No. FP007-2013B and University of Malaya for grant No. RP003-13AFR.

References

  1. 1.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRefGoogle Scholar
  2. 2.
    Poudel P, Qiao Q (2014) Carbon nanostructure counter electrodes for low cost and stable dye-sensitized solar cells. Nano Energy 4(0):157–175CrossRefGoogle Scholar
  3. 3.
    Ahmad I, Khan U, Gun’ko YK (2011) Graphene, carbon nanotube and ionic liquid mixtures: towards new quasi-solid state electrolytes for dye sensitised solar cells. J Mater Chem 21(42):16990–16996CrossRefGoogle Scholar
  4. 4.
    Snaith HJ (2010) Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv Funct Mater 20(1):13–19CrossRefGoogle Scholar
  5. 5.
    Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519CrossRefGoogle Scholar
  6. 6.
    Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4(2):145–153CrossRefGoogle Scholar
  7. 7.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585CrossRefGoogle Scholar
  8. 8.
    Wu JH, Lan Z, Lin JM, Huang ML, Hao SC, Sato T, Yin S (2007) A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv Mater 19(22):4006–4011CrossRefGoogle Scholar
  9. 9.
    Chen C-L, Teng H, Lee Y-L (2011) In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells. Adv Mater 23(36):4199–4204CrossRefGoogle Scholar
  10. 10.
    Rika AA, Rahman MYA, Salleh MM (2009) Preparation and characterization of PAN based solid polymeric electrolyte for dye-sensitized solar cells. Phys B Condens Matter 404(8–11):1359–1361CrossRefGoogle Scholar
  11. 11.
    Anandan S, Pitchumani S, Muthuraaman B, Maruthamuthu P (2006) Heteropolyacid-impregnated PVDF as a solid polymer electrolyte for dye-sensitized solar cells. Sol Energy Mater Sol Cells 90(12):1715–1720CrossRefGoogle Scholar
  12. 12.
    Theerthagiri J, Senthil RA, Buraidah MH, Madhavan J, Arof AK (2015) Effect of tetrabutylammonium iodide content on PVDF-PMMA polymer blend electrolytes for dye-sensitized solar cells. Ionics 21(10):2889–2896CrossRefGoogle Scholar
  13. 13.
    Theerthagiri J, Senthil RA, Ali@Buraidah MH, Madhavan J, Mohd Arof AK (2015) Studies of solvent effect on the conductivity of 2-mercaptopyridine-doped solid polymer blend electrolytes and its application in dye-sensitized solar cells. J Appl Polym Sci 132(35):42489CrossRefGoogle Scholar
  14. 14.
    Chen K-F, Liu C-H, Huang H-K, Tsai C-H, Chen F-R (2013) Polyvinyl butyral-based thin film polymeric electrolyte for dye-sensitized solar cell with long-term stability. Int J Electrochem Sci 8:3524–3539Google Scholar
  15. 15.
    Kang J, Li W, Wang X, Lin Y, Xiao X, Fang S (2003) Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells. Electrochim Acta 48(17):2487–2491CrossRefGoogle Scholar
  16. 16.
    Tiautit N, Puratane C, Panpinit S, Saengsuwan S (2014) Effect of SiO2 and TiO2 nanoparticles on the performance of dye-sensitized solar cells using PVDF-HFP/PVA gel electrolytes. Energy Procedia 56(0):378–385CrossRefGoogle Scholar
  17. 17.
    Wang X, Zhang Y, Xu Q, Xu J, Wu B, Gong M, Chu J, Xiong S (2015) A low-cost quasi-solid DSSC assembled with PVDF-based gel electrolyte plasticized by PC–EC & electrodeposited Pt counter electrode. J Photochem Photobiol A Chem 311:112–117CrossRefGoogle Scholar
  18. 18.
    Ren Y, Zhang Z, Fang S, Yang M, Cai S (2002) Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells. Sol Energy Mater Sol Cells 71(2):253–259CrossRefGoogle Scholar
  19. 19.
    Yang H, Huang M, Wu J, Lan Z, Hao S, Lin J (2008) The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells. Mater Chem Phys 110(1):38–42CrossRefGoogle Scholar
  20. 20.
    Aram E, Ehsani M, Khonakdar HA (2015) Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte. Thermochim Acta 615:61–67CrossRefGoogle Scholar
  21. 21.
    Arof AK, Aziz MF, Noor MM, Careem MA, Bandara LRAK, Thotawatthage CA, Rupasinghe WNS, Dissanayake MAKL (2014) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte. Int J Hydrog Energy 39(6):2929–2935CrossRefGoogle Scholar
  22. 22.
    Higashinoa T, Imahori H (2015) Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton Trans 44:448CrossRefGoogle Scholar
  23. 23.
    Sandoval C, Castro C, Gargallo L, Radic D, Freire J (2005) Specific interactions in blends containing chitosan and functionalized polymers. Molecular dynamics simulations. Polymer 46(23):10437–10442CrossRefGoogle Scholar
  24. 24.
    Kuila T, Acharya H, Srivastava SK, Samantaray BK, Kureti S (2007) Enhancing the ionic conductivity of PEO based plasticized composite polymer electrolyte by LaMnO3 nanofiller. Mater Sci Eng B 137(1–3):217–224CrossRefGoogle Scholar
  25. 25.
    Jia Y-T, Gong J, Gu X-H, Kim H-Y, Dong J, Shen X-Y (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr Polym 67(3):403–409CrossRefGoogle Scholar
  26. 26.
    Yang C-C, Wu GM (2009) Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors. Mater Chem Phys 114(2–3):948–955CrossRefGoogle Scholar
  27. 27.
    Joge P, Kanchan DK, Sharma P, Nirali G (2013) Effect of nano-filler on electrical properties of PVA-PEO blend polymer electrolyte. India J Pure Appl Phys 51:350Google Scholar
  28. 28.
    Abd El-kader FH, Hakeem NA, Elashmawi IS, Ismail AM (2013) Structural, optical and thermal characterization of ZnO nanoparticles doped in PEO/PVA blend films. Aust J Basic Appl Sci 7(10):608–619Google Scholar
  29. 29.
    Kapil M, Lata S (2013) A review: residual solvents and various effective gas chromatographic techniques in the analysis of residual solvent. Int J Pharm Res Rev 2(10):25–40Google Scholar
  30. 30.
    Rajendran S, Babu RS, Sivakumar P (2007) Effect of salt concentration on poly (vinyl chloride)/poly (acrylonitrile) based hybrid polymer electrolytes. J Power Sources 170(2):460–464CrossRefGoogle Scholar
  31. 31.
    Arof AK, Naeem M, Hameed F, Jayasundara WJMJSR, Careem MA, Teo LP, Buraidah MH (2014) Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing I−/I-3 redox couple. Opt Quant Electron 46(1):143–154CrossRefGoogle Scholar
  32. 32.
    Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J Non-Cryst Solids 354(14):1494–1502CrossRefGoogle Scholar
  33. 33.
    Wu J, Lan Z, Wang D, Hao S, Lin J, Huang Y, Yin S, Sato T (2006) Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochim Acta 51(20):4243–4249CrossRefGoogle Scholar
  34. 34.
    Bandara TMWJ, Mellander BE (2011) Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes based on a new model for dielectric response. In: Alexander K (ed) Ionic liquids: theory, properties, new approaches. InTech, Crotia p383.Google Scholar
  35. 35.
    Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics 189(1):63–68CrossRefGoogle Scholar
  36. 36.
    Oh B, Jung WI, Kim D-W, Rhee HW (2002) Preparation of UV curable gel polymer electrolytes and their electrochemical properties. Bull Kor Chem Soc 23(5):5Google Scholar
  37. 37.
    Jing G, Zhen-Li G, Xiao-Li Y, Shu G, Zhong-Liang Z, Bo W (2012) Investigation of the free volume and ionic conducting mechanism of poly(ethylene oxide)-LiClO4 polymeric electrolyte by positron annihilating lifetime spectroscopy. Chin Phys B 21(10):107803CrossRefGoogle Scholar
  38. 38.
    Saikia D, Pan Y-C, Kao H-M (2012) Synthesis, multinuclear NMR characterization and dynamic property of organic–inorganic hybrid electrolyte membrane based on alkoxysilane and poly(oxyalkylene) diamine. Membranes 2(2):253CrossRefGoogle Scholar
  39. 39.
    Vila J, Ginés P, Pico JM, Franjo C, Jiménez E, Varela LM, Cabeza O (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel–Tamman–Fulcher behavior. Fluid Phase Equilib 242(2):141–146CrossRefGoogle Scholar
  40. 40.
    Sanchez Garcia MD, Lagaron JM (2012) 12—Nanocomposites for food and beverage packaging materials. In: Huang Q (ed) Nanotechnology in the food, beverage and nutraceutical industries. Woodhead Publishing, pp 335–361.Google Scholar
  41. 41.
    Hafez H, Lan Z, Li Q, Wu J (2010) High efficiency dye-sensitized solar cell based on novel TiO(2) nanorod/nanoparticle bilayer electrode. Nanotechnol Sci Appl 3:45–51CrossRefGoogle Scholar
  42. 42.
    Guliani R, Jain A, Kapoor A (2012) Exact analytical analysis of dye-sensitized solar cell: improved method and comparative study. Open Renewable Energy J 5:49–60CrossRefGoogle Scholar
  43. 43.
    Yang R-Y, Chen H-Y, Lai F-D (2012) Performance degradation of dye-sensitized solar cells induced by electrolytes. Adv Mater Sci Eng 2012:4Google Scholar
  44. 44.
    Bandara TM, Dissanayake MA, Jayasundara WJ, Albinsson I, Mellander BE (2012) Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI2 binary iodide system. Phys Chem Chem Phys 14(24):8620–8627CrossRefGoogle Scholar
  45. 45.
    Pugliese D (2014) New insights in dye-sensitized solar cells: novel nanostructured photoanodes, metal-free dye, quasi-solid electrolytes and physics-based modeling. Politecnico di Torino, TurinGoogle Scholar
  46. 46.
    Sarker S, Ahammad AJS, Seo HW, Kim DM (2014) Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation. Int J Photoenergy 2014:17CrossRefGoogle Scholar
  47. 47.
    Lamberti A, Sacco A, Bianco S, Quaglio M, Manfredi D, Pirri CF (2013) Enhancement of electron lifetime in dye-sensitized solar cells using anodically grown TiO2 nanotube/nanoparticle composite photoanodes. Microelectron Eng 111:137–142CrossRefGoogle Scholar
  48. 48.
    Jun HK, Careem MA, Arof AK (2014) Investigation of multilayered quantum dot-sensitized solar cells with different Zn chalcogenide passivation layers. J Appl Electrochem 44(9):977–988CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • T. S. Tiong
    • 1
  • M. H. Buraidah
    • 1
    Email author
  • L. P. Teo
    • 1
  • A. K. Arof
    • 1
  1. 1.Department of Physics, Faculty of ScienceCentre for Ionics University of MalayaKuala LumpurMalaysia

Personalised recommendations