, Volume 22, Issue 12, pp 2341–2346 | Cite as

A low-cost, high-energy polymer lithium-sulfur cell using a composite electrode and polyethylene oxide (PEO) electrolyte

  • Lorenzo Carbone
  • Jusef Hassoun
Original Paper


Herein, we report a polymer cell using high-energy lithium metal anode, a composite sulfur-carbon cathode, and polyethylene oxide (PEO)-lithium trifluoromethan sulfonate (LiCF3SO3) electrolyte. The limited cost of raw materials as well as the very simple synthetic procedures, involving planetary ball milling (for S-C cathode) and solvent casting (for PEO-electrolyte), are expected to reflect into remarkable reduction of the economic impact of the proposed battery. Furthermore, the high energy of the Li-S cell and safety of the polymer configuration represent additional bonuses of the system. The S-C material, revealing a maximum capacity as high as 700 mAh g−1 in liquid electrolyte, is employed in a lithium-sulfur battery with the polymer configuration. The polymer cell delivers a capacity of 450 mAh g−1 at a voltage of about 2 V; hence, a theoretical energy density of 900 Wh kg−1 that may reflect into a high practical value, suitable for energy storage applications.


Sulfur cathodes Polymer electrolytes Lithium batteries 



The authors thank the collaboration project “Accordo di Collaborazione Quadro 2015” between University of Ferrara (Department of Chemical and Pharmaceutical Sciences) and Sapienza University of Rome (Chemistry Department). One of us (LC) would thank the Erasmus Placement Project performed in Volkswagen AG, Hanau, Germany.


  1. 1.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430. doi: 10.1016/j.jpowsour.2009.11.048 CrossRefGoogle Scholar
  2. 2.
    Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Eng 47:2930–2946. doi: 10.1002/anie.200702505 CrossRefGoogle Scholar
  3. 3.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi: 10.1038/35104644 CrossRefGoogle Scholar
  4. 4.
    Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energy Convers Manag 58:134–148. doi: 10.1016/j.enconman.2012.01.001 CrossRefGoogle Scholar
  5. 5.
    Van den Bossche P, Vergels F, Van Mierlo J, et al. (2006) SUBAT: an assessment of sustainable battery technology. J Power Sources 162:913–919. doi: 10.1016/j.jpowsour.2005.07.039 CrossRefGoogle Scholar
  6. 6.
    Whittingham MS (2012) History, evolution, and future status of energy storage. Proc IEEE 100:1518–1534. doi: 10.1109/JPROC.2012.2190170 CrossRefGoogle Scholar
  7. 7.
    Aricò AS, Bruce P, Scrosati B, et al. (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. doi: 10.1038/nmat1368 CrossRefGoogle Scholar
  8. 8.
    Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193. doi: 10.1038/nature07853 CrossRefGoogle Scholar
  9. 9.
    Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. a look into the future. Energy. Environ Sci 4:3287. doi: 10.1039/c1ee01388b Google Scholar
  10. 10.
    Urbonaite S, Poux T, Novák P (2015) Progress towards commercially viable Li-S battery cells. Adv Energy Mater. doi: 10.1002/aenm.201500118 Google Scholar
  11. 11.
    Agostini M, Lee DJ, Scrosati B, et al. (2014) Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium-sulfur battery. J Power Sources 265:14–19. doi: 10.1016/j.jpowsour.2014.04.074 CrossRefGoogle Scholar
  12. 12.
    Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969. doi: 10.1149/1.1806394 CrossRefGoogle Scholar
  13. 13.
    Scheers J, Fantini S, Johansson P (2014) A review of electrolytes for lithium-sulphur batteries. J Power Sources 255:204–218. doi: 10.1016/j.jpowsour.2014.01.023 CrossRefGoogle Scholar
  14. 14.
    Lee DJ, Agostini M, Park JW, et al. (2013) Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. ChemSusChem 6:2245–2248. doi: 10.1002/cssc.201300313 CrossRefGoogle Scholar
  15. 15.
    Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 22:5198–5201. doi: 10.1002/adma.201002584 CrossRefGoogle Scholar
  16. 16.
    Jeong SS, Lim YT, Choi YJ, et al. (2007) Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. J Power Sources 174:745–750. doi: 10.1016/j.jpowsour.2007.06.108 CrossRefGoogle Scholar
  17. 17.
    Shin JH, Lim YT, Kim KW, et al. (2002) Effect of ball milling on structural and electrochemical properties of (PEO)nLiX (LiX = LiCF3SO3 and LiBF4) polymer electrolytes. J Power Sources 107:103–109. doi: 10.1016/S0378-7753(01)00990-9
  18. 18.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458. doi: 10.1038/28818 CrossRefGoogle Scholar
  19. 19.
    Lin Z, Liang C (2015) Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem A 3:936–958. doi: 10.1039/C4TA04727C CrossRefGoogle Scholar
  20. 20.
    Boukamp B (1986) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20:31–44. doi: 10.1016/0167-2738(86)90031-7 CrossRefGoogle Scholar
  21. 21.
    Boukamp B (1986) A package for impedance/admittance data analysis. Solid State lonics 19:136–140. doi: 10.1016/0167-2738(86)90100-1
  22. 22.
    Appetecchi G, Croce F, Persi L, et al. (2000) Transport and interfacial properties of composite polymer electrolytes. Electrochim Acta 45:1481–1490. doi: 10.1016/S0013-4686(99)00363-1 CrossRefGoogle Scholar
  23. 23.
    Li Q, Sun HY, Takeda Y, et al. (2001) Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte. Spec Issue Interfacial Phenom Batter 94:201–205. doi: 10.1016/S0378-7753(00)00587-5 Google Scholar
  24. 24.
    Demir Cakan R, Morcrette M, Gangulibabu B, et al. (2012) Li-S batteries: simple approaches for superior performances. Energy Environ Sci 6:176–182. doi: 10.1039/c2ee23411d CrossRefGoogle Scholar
  25. 25.
    Agostini M, Hassoun J, Liu J, et al. (2014) A lithium-ion sulfur battery based on a carbon-coated lithium-sulfide cathode and an electrodeposited silicon-based anode. ACS Appl Mater Interfaces 6:10924–10928. doi: 10.1021/am4057166 CrossRefGoogle Scholar
  26. 26.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162. doi: 10.1016/j.jpowsour.2012.12.102 CrossRefGoogle Scholar
  27. 27.
    Barchasz C, Molton F, Duboc C (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84:3973–3980. doi: 10.1021/ac2032244 CrossRefGoogle Scholar
  28. 28.
    Lee JT, Zhao Y, Kim H, et al. (2014) Sulfur infiltrated activated carbon cathodes for lithium sulfur cells: the combined effects of pore size distribution and electrolyte molarity. J Power Sources 248:752–761. doi: 10.1016/j.jpowsour.2013.10.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chemistry DepartmentSapienza University of RomeRomeItaly
  2. 2.Department of Chemical and Pharmaceutical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations