Skip to main content
Log in

Identification of solid electrolyte interphase formed on graphite electrode cycled in trifluoroethyl aliphatic carboxylate-based electrolytes for low-temperature lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Trifluoroethyl aliphatic carboxylates with different length of carbon-chain in acyl groups have been introduced into carbonate-based electrolyte as co-solvents to improve the low-temperature performance of lithium-ion batteries, both in capacity retention and lowering polarization of graphite electrode. To identify the further influence of trifluoroethyl aliphatic carboxylates on graphite electrode, the components and properties of the surface film on graphite electrode cycled in different electrolytes are investigated using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The IR and XPS results show that the chemical species of the solid electrolyte interphase (SEI) on graphite electrode strongly depend on the selection of co-solvent. For instance, among those species, the content of RCOOLi increases with an increasing number of carbon atoms in RCOOCH2CF3 molecule, wherein R was an alkyl with 1, 3, or 5 carbon atoms. We suggest that the thickness and components of the SEI film play a crucial role on the enhanced low-temperature performance of the lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chung G, Kim H, Yu S, Jun S, Choi J, Kim M (2000) J Electrochem Soc 147:4391

    Article  CAS  Google Scholar 

  2. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) Electrochim Acta 45:67

    Article  CAS  Google Scholar 

  3. Xu K, Lam Y, Zhang S, Jow T, Curtis T (2007) J Phys Chem C 111:7411

    Article  CAS  Google Scholar 

  4. Smart MC, Ratnakumar BV, Surampudi S (1999) J Electrochem Soc 146:486

    Article  CAS  Google Scholar 

  5. Huang CK, Sakamoto JS, Wolfenstine J, Surampudi S (2000) J Electrochem Soc 147:2893

    Article  CAS  Google Scholar 

  6. Contestabile M, Morselli M, Paraventi R, Neat RJ (2003) J Power Sources 119–121:943

    Article  Google Scholar 

  7. Zhang SS (2006) J Power Sources 162:1379

    Article  CAS  Google Scholar 

  8. Smart MC, Ratnakumar BV, Whitcanack LD, Chin KB, Surampudi S, Croft H, Tice D, Staniewicz R (2003) J Power Sources 119–121:349

    Article  Google Scholar 

  9. Plichta EJ, Hendrickson M, Thompson R, Au G, Behl WK, Smart MC, Ratnakumar BV, Surampudi S (2001) J Power Sources 94:160

    Article  CAS  Google Scholar 

  10. Smart MC, Ratnakumar BV, Ryan-Mowrey VS, Surampudi S, Prakash GKS, Hu J, Cheung I (2003) J Power Sources 119–121:359

    Article  Google Scholar 

  11. Smith KA, Smart MC, Prakash GKS, Ratnakumar BV (2008) ECS Trans 11:91

    Article  CAS  Google Scholar 

  12. Herreyre S, Huchet O, Barusseau S, Perton F, Bodet JM, Biensan P (2001) J Power Sources 97–98:576

    Article  Google Scholar 

  13. Smart MC, Whitacre JF, Ratnakumar BV, Amine K (2007) J Power Sources 168:501

    Article  CAS  Google Scholar 

  14. Aurbach D, Zaban A, Gofer Y, Ely YE, Weissman I, Chusid O, Abramson O (1995) J Power Sources 54:76

    Article  CAS  Google Scholar 

  15. Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid B, Markovsky M, Levi E, Levi A, Schechter E, Granot Y (1997) J Power Sources 68:91

    Article  CAS  Google Scholar 

  16. Peled E, Golodnitsky D, Menachem C, BarTow D (1998) J Electrochem Soc 145:3482

    Article  CAS  Google Scholar 

  17. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) Electrochim Acta 47:1423

    Article  CAS  Google Scholar 

  18. Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z (2005) J Electrochem Soc 152:A2046

    Article  CAS  Google Scholar 

  19. Lu W, Xie K, Chen Z, Pan Y, Zheng C (2014) J Fluor Chem 161:110

    Article  CAS  Google Scholar 

  20. Xu K (2009) Electrolytes: overview, secondary batteries – lithium rechargeable systems. Elsevier, London, p 51-53

  21. Ue M (2009) Electrolytes: nonaqueous, secondary batteries—lithium rechargeable systems. Elsevier, London, p 72-75

  22. Hayashi K, Nemoto Y, Tobishima S, Yamaki J (1999) Electrochim Acta 44:2337

    Article  CAS  Google Scholar 

  23. Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) Solid State Ionics 148:405

    Article  CAS  Google Scholar 

  24. Ke Y, Dong H (1998) Handbook of analytical chemistry (second edition)-spectroscopic analysis. Chemical Industry Press, Beijing, p 101-109

  25. Aurbach D, Gnanaraj JS, Geissler W, Schmidt M (2004) J Electrochem Soc 151:A23

    Article  CAS  Google Scholar 

  26. Chen YC, Ouyang CY, Song LJ, Sun ZL (2011) J Phys Chem C 115:7044

    Article  CAS  Google Scholar 

  27. Shi S, Lu P, Liu Z, Qi Y, Hector LG, Li H, Harris SJ (2012) J Am Chem Soc 134:15476

    Article  CAS  Google Scholar 

  28. Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) J Phys Chem C 117:13403

    Article  CAS  Google Scholar 

  29. Sato K, Zhao L, Okada S, Yamaki J (2011) J Power Sources 196:5617

    Article  CAS  Google Scholar 

  30. Wu B, Ren Y, Mu D, Zhang C, Liu X, Wu F (2013) Int J Electrochem Sci 8:8502

    CAS  Google Scholar 

  31. Zheng H (2006) Lithium-ion batteries electrolyte. Chemical Industry Press, Beijing, p 260-265

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhao Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Xiong, S., Xie, K. et al. Identification of solid electrolyte interphase formed on graphite electrode cycled in trifluoroethyl aliphatic carboxylate-based electrolytes for low-temperature lithium-ion batteries. Ionics 22, 2095–2102 (2016). https://doi.org/10.1007/s11581-016-1743-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1743-9

Keywords

Navigation