Skip to main content

Advertisement

Log in

Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

TiO2-reduced graphene oxide (RGO) composite was synthesized via a sol-gel process and investigated as an anode material for sodium-ion batteries (SIBs). A remarkable improvement in sodium ion storage with a reversible capacity of 227 mAh g−1 after 50 cycles at 50 mA g−1 is achieved, compared to that (33 mAh g−1) for TiO2. The enhanced electrochemical performance of TiO2-RGO composite is attributed to the larger specific surface area and better electrical conductivity of TiO2-RGO composite. The excellent performance of TiO2-RGO composite enables it a potential electrode material for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou X, Wan L-J, Guo Y-G (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25(15):2152–2157. doi:10.1002/adma.201300071

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  3. Xu Y, Zhu Y, Liu Y, Wang C (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3(1):128–133. doi:10.1002/aenm.201200346

    Article  CAS  Google Scholar 

  4. Pan A, Wu HB, Yu L, Lou XW (2013) Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew Chem 125(8):2282–2286. doi:10.1002/ange.201209535

    Article  Google Scholar 

  5. Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energ Environ Sci 6(8):2338–2360. doi:10.1039/c3ee40847g

    Article  CAS  Google Scholar 

  6. Wenzel S, Hara T, Janek J, Adelhelm P (2011) Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energ Environ Sci 4(9):3342–3345. doi:10.1039/c1ee01744f

    Article  CAS  Google Scholar 

  7. Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu Y-S, Li H, Armand M, Ikuhara Y, Chen L, Huang X (2013) Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun 4:1870. doi:10.1038/ncomms2878

    Article  Google Scholar 

  8. Levi E, Gofer Y, Aurbach D (2010) On the way to rechargeable mg batteries: the challenge of new cathode materials. Chem Mater 22(3):860–868. doi:10.1021/cm9016497

    Article  CAS  Google Scholar 

  9. Fei H, Feng Z, Liu X (2014) Novel sodium bismuth sulfide nanostructures: a promising anode materials for sodium-ion batteries with high capacity. Ionics 21(7):1967–1972. doi:10.1007/s11581-014-1356-0

    Article  Google Scholar 

  10. Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13(7):3093–3100. doi:10.1021/nl400998t

    Article  CAS  Google Scholar 

  11. Bi Z, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi M, Guo B, Sun X-G, Dai S (2013) Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sources 222:461–466. doi:10.1016/j.jpowsour.2012.09.019

    Article  CAS  Google Scholar 

  12. Hariharan S, Saravanan K, Ramar V, Balaya P (2013) A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. Phys Chem Chem Phys 15(8):2945–2953. doi:10.1039/c2cp44572g

    Article  CAS  Google Scholar 

  13. Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Edit 53(8):2152–2156. doi:10.1002/anie.201308354

    Article  CAS  Google Scholar 

  14. Komaba S, Mikumo T, Yabuuchi N, Ogata A, Yoshida H, Yamada Y (2010) Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α‐Fe2O3 for rechargeable batteries. J Electrochem Soc 157(1):A60–A65. doi:10.1149/1.3254160

    Article  CAS  Google Scholar 

  15. Alcántara R, Lavela P, Ortiz GF, Tirado JL, Menéndez R, Santamaría R, Jiménez-Mateos JM (2003) Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. Carbon 41(15):3003–3013. doi:10.1016/S0008-6223(03)00432-9

    Article  Google Scholar 

  16. Ponrouch A, Goñi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88. doi:10.1016/j.elecom.2012.10.038

    Article  CAS  Google Scholar 

  17. Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148(8):A803–A811. doi:10.1149/1.1379565

    Article  CAS  Google Scholar 

  18. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries. Adv Funct Mater 21(20):3859–3867. doi:10.1002/adfm.201100854

    Article  CAS  Google Scholar 

  19. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48(56):7070–7072. doi:10.1039/c2cc32730a

    Article  CAS  Google Scholar 

  20. Datta MK, Epur R, Saha P, Kadakia K, Park SK, Kumta PN (2013) Tin and graphite based nanocomposites: potential anode for sodium ion batteries. J Power Sources 225:316–322. doi:10.1016/j.jpowsour.2012.10.014

    Article  CAS  Google Scholar 

  21. Liu X, Chen T, Chu H, Niu L, Sun Z, Pan L, Sun CQ (2015) Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim Acta 166:12–16. doi:10.1016/j.electacta.2015.03.081

    Article  CAS  Google Scholar 

  22. Qin W, Chen T, Pan L, Niu L, Hu B, Li D, Li J, Sun Z (2015) MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim Acta 153:55–61. doi:10.1016/j.electacta.2014.11.034

    Article  CAS  Google Scholar 

  23. Yan Z, Liu L, Shu H, Yang X, Wang H, Tan J, Zhou Q, Huang Z, Wang X (2015) A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J Power Sources 274:8–14. doi:10.1016/j.jpowsour.2014.10.045

    Article  CAS  Google Scholar 

  24. Shirpour M, Cabana J, Doeff M (2013) New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energ Environ Sci 6(8):2538–2547. doi:10.1039/c3ee41037d

    Article  CAS  Google Scholar 

  25. Ge Y, Jiang H, Zhu J, Lu Y, Chen C, Hu Y, Qiu Y, Zhang X (2015) High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. ElectrochimActa 157:142–148. doi:10.1016/j.electacta.2015.01.086

    Article  CAS  Google Scholar 

  26. Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2(20):2560–2565. doi:10.1021/jz2012066

    Article  CAS  Google Scholar 

  27. Ni'mah YL, Cheng M-Y, Cheng JH, Rick J, Hwang B-J (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381. doi:10.1016/j.jpowsour.2014.11.047

    Article  Google Scholar 

  28. Yang Y, Ji X, Jing M, Hou H, Zhu Y, Fang L, Yang X, Chen Q, Banks CE (2015) Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A 10:5648–5655

    Article  Google Scholar 

  29. Shirpour M, Cabana J, Doeff M (2014) Lepidocrocite-type layered titanate structures: new lithium and sodium ion intercalation anode materials. Chem Mater 26(8):2502–2512

    Article  CAS  Google Scholar 

  30. Kim K-T, Ali G, Chung KY, Yoon CS, Yashiro H, Sun Y-K, Lu J, Amine K, Myung S-T (2014) Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett 14(2):416–422

    Article  CAS  Google Scholar 

  31. Huang J, Yuan D, Zhang H, Cao Y, Li G, Yang H, Gao X (2013) Electrochemical sodium storage of TiO2 (B) nanotubes for sodium ion batteries. RSC Adv 3(31):12593–12597

    Article  CAS  Google Scholar 

  32. Perez-Flores JC, Baehtz C, Kuhn A, Garcia-Alvarado F (2014) Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries. J Mater Chem A 2(6):1825–1833. doi:10.1039/c3ta13394j

    Article  CAS  Google Scholar 

  33. Lee J, Chen Y-M, Zhu Y, Vogt BD (2014) Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries. ACS Appl Mater Inter 6(23):21011–21018

    Article  CAS  Google Scholar 

  34. Oh S-M, Hwang J-Y, Yoon CS, Lu J, Amine K, Belharouak I, Sun Y-K (2014) High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl Mater Inter 6(14):11295–11301

    Article  CAS  Google Scholar 

  35. Ohata Y, Yun J, Miyamae R, Kim T, Kim J, Seo M-H, Kitajo A, Miyawaki J, Okada S, Yoon S-H (2014) TiO2-entrained tubular carbon nanofiber and its electrochemical properties in the rechargeable Na-ion battery system. Appl Therm Eng 72(2):309–314

    Article  CAS  Google Scholar 

  36. Cha HA, Jeong HM, Kang JK (2014) Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J Mate Chem A 2(15):5182–5186

    Article  CAS  Google Scholar 

  37. Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273:878–884

    Article  CAS  Google Scholar 

  38. Li J, Liu X, Pan L, Qin W, Chen T, Sun Z (2014) MoS2—reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Adv 4(19):9647–9651

    Article  CAS  Google Scholar 

  39. Lu T, Zhang Y, Li H, Pan L, Li Y, Sun Z (2010) Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim Acta 55(13):4170–4173. doi:10.1016/j.electacta.2010.02.095

    Article  CAS  Google Scholar 

  40. Zhu G, Xu T, Lv T, Pan L, Zhao Q, Sun Z (2011) Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells. J ElectroanalChem 650(2):248–251

    Article  CAS  Google Scholar 

  41. Lu T, Pan L, Nie C, Zhao Z, Sun Z (2011) A green and fast way for reduction of graphene oxide in acidic aqueous solution via microwave assistance. Phys Status Solidi (a) 208(10):2325–2327

    Article  CAS  Google Scholar 

  42. Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. JPower Sources 273:878–884

    Article  CAS  Google Scholar 

  43. Xu Y, Lotfabad EM, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D (2013) Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 49(79):8973–8975

    Article  CAS  Google Scholar 

  44. Wu L, Buchholz D, Bresser D, Chagas LG, Passerini S (2014) Anatase TiO2 nanoparticles for high power sodium-ion anodes. J Power Sources 251:379–385

    Article  CAS  Google Scholar 

  45. Yan D, Yu C, Bai Y, Zhang W, Chen T, Hu B, Sun Z, Pan L (2015) Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem Commun 51(39):8261–8264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Research Project of Shanghai Science and Technology Committee (No. 14JC1491000) and Basic Research Project of Shanghai Science and Technology Committee (No. 12JC1410000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Chen, T., Qin, W. et al. Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries. Ionics 22, 555–562 (2016). https://doi.org/10.1007/s11581-015-1574-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1574-0

Keywords

Navigation