Skip to main content

Control of calcium oxalate morphology through electrocrystallization as an electrochemical approach for preventing pathological disease

Abstract

Pathological crystallization of calcium oxalate (CaOx) inside the urinary tract is called calculi or kidney stone (Urolithiasis). CaOx exhibits three crystalline types in nature: CaOx monohydrate COM, dihydrate COD and trihydrate COT. COD and COM are often found in urinary calculi, particularly COM. Electrocrystallization has been recently used to perform oriented crystallization of inorganic compounds such as Ca-salts. Although many mineralization methods exist, the mechanisms involved in the control of CaOx polymorphism still remain unclear. Herein, we induced selective electrocrystallization of COD by modifying the electrical current, time and electrochemical cell type. By combining above factors, we established an efficient method without the use of additives for stabilizing non-pathological CaOx crystals. We found notorious stabilization of CaOx polymorphisms with hierarchically complex shape with nano-organization assembly, size and aggregated crystalline particles. Our results demonstrated that, by using an optimized electrochemical approach, this technique could have great potential for studying the nucleation and crystal growth of CaOx through functionalized synthetic polymers, and to develop a novel pathway to evaluate new calculi preventing-compound inhibitors.

Electrocrystallization set-up for modifying the morphology and crystal growth of CaOx particles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. DiMasi E, Gower LB (2014) Biomineralization sourcebook - characterization of biominerals and biomimetic materials, 1st edn. CRC Pres, Taylor & Francis Group, Florida

    Google Scholar 

  2. Lieske J, Leonard R, Toback G (1995) Renal fluid electrolyte. Am J Physiol 37:604

    Google Scholar 

  3. Karlsen SJ, Grenabo L, Holmberg G, Colstrup H, Jorgensen TM, Lindell O, Ala-Opas M, Ulvik NM, Shultz A, Griffith DP (1995) J Urol 153:378

    CAS  Article  Google Scholar 

  4. Wesson JA, Ward MD (2007) Elements 3:415

    CAS  Article  Google Scholar 

  5. Neira-Carrillo A, Vásquez-Quitral P (2010) Av Cs Vet 25:41

    Google Scholar 

  6. Long LO, Park S (2007) Minerva Urol Nefrol 59:317

    CAS  Google Scholar 

  7. Monje P, Baran E (2002) Plant Physiol 128:707

    CAS  Article  Google Scholar 

  8. Tomažic B, Nancollas GH (1979) J Cryst Growth 46:355

    Article  Google Scholar 

  9. Wesson JA, Worcester EM, Wiessner JH, Mandel NS, Kleinman JG (1998) Kidney Int 53:952

    CAS  Article  Google Scholar 

  10. Finlayson B (1978) Kidney Int 13:344

    CAS  Article  Google Scholar 

  11. Benitez IO, Talham DR (2004) Langmuir 20:8287

    CAS  Article  Google Scholar 

  12. Benitez IO, Talham DR (2005) J Am Chem Soc 127:2814

    CAS  Article  Google Scholar 

  13. Khan SR, Whalen PO, Glenton PA (1993) J Cryst Growth 134:211

    CAS  Article  Google Scholar 

  14. Brown CM, Novin F, Purich DL (1994) J Cryst Growth 135:523

    CAS  Article  Google Scholar 

  15. Zhang D, Qi L, Ma J, Cheng H (2002) Chem Mater 2450:2450

    Article  Google Scholar 

  16. Golden TD, Shumsky MG, Zhou Y, VanderWerf RA, Leeuwen RAV, Swizter JA (1996) Chem Mater 8:2499

    CAS  Article  Google Scholar 

  17. Joseph S, Kamath PV (2008) Solid State Sci 10:1215

    CAS  Article  Google Scholar 

  18. Rudnik E (2013) Ionics 19:1047

    CAS  Article  Google Scholar 

  19. Saha S, Sultana S, Islam MM, Rahman MM, Mollah MYA, Susan MABH (2014) Ionics 20:1175

    CAS  Article  Google Scholar 

  20. Gebauer D, Völkel A, Cölfen H (2008) Science 322:1819

    CAS  Article  Google Scholar 

  21. Gebauer D, Kellermeier M, Gale JD, Bergstro L, Cölfen H (2014) Chem Soc Rev 43:2348

    CAS  Article  Google Scholar 

  22. Windhausen AB, Swizter JA (2008) Abstracts, 64th southwest regional meeting of the american chemical society. Little Rock, AR, United States

    Google Scholar 

  23. Swizter JA (1987) Am Ceram Soc Bull 66:1521

    Google Scholar 

  24. Kajita T, Kogyo N-S (1995) Kenkyusho Kenkyu Hokoku 80:22

    CAS  Google Scholar 

  25. Kajita T (1989) Hyomen Kagaku 10:181

    CAS  Article  Google Scholar 

  26. Joseph J, Kamath PV (2009) J Solid State Electr 14:1481

    Article  Google Scholar 

  27. Thongboonkerd T, Semangoen T, Chutipongtanate S (2006) Clin Chim Acta 367:120

    CAS  Article  Google Scholar 

  28. Euvrard M, Filiatre C, Crausaz E (2000) J Cryst Growth 216:466

    CAS  Article  Google Scholar 

  29. Milchev A (2011) J Solid State Electr 15:1401

    CAS  Article  Google Scholar 

  30. Dinamani M, Kamath PV, Seshadri R (2003) Solid State Sci 5:805

    CAS  Article  Google Scholar 

  31. Jo K, Yu HZ, Yang H (2011) Electrochim Acta 56:4828

    CAS  Article  Google Scholar 

  32. Yang G, Yang Y, Wang Y, Wang Y, Yu L, Zhou D, Jia J (2012) Electrochim Acta 78:200

    CAS  Article  Google Scholar 

  33. Anipa TN, Anoop KM, Pai RK (2015) New J. Chem. DOI: 10.1039/C5NJ01350J

  34. Zhang J, Oyama M (2005) Anal Chim Acta 540:299

    CAS  Article  Google Scholar 

  35. Ma Y, Di J, Yan X, Zhao M, Lu Z, Tu Y (2009) Biosensors and Bioelectronics 24:1480

    CAS  Article  Google Scholar 

  36. Pavez J, Silva J, Melo F (2005) Electrochim Acta 50:3488

    CAS  Article  Google Scholar 

  37. Lédion J, Leroy P, Labbe JP (1985) TSM L´eau 80:323

    Google Scholar 

  38. Ketrane R, Saidani B, Gil O, Leleyter L, Baraud F (2009) Desalination 249:1397

    CAS  Article  Google Scholar 

  39. Dickey MD, Weiss EA, Smythe EJ, Chiechi RC, Capasso F, Whitesides GM (2008) ACS Nano 2:800

    CAS  Article  Google Scholar 

  40. Anoop KM, Mohanta K, Pai RK (2014) IEEE J Photovolt 4:1570

    Article  Google Scholar 

  41. Aoki Y, Huang J, Kunitake T (2006) J Mater Chem 16:292

    CAS  Article  Google Scholar 

  42. Cheng Z-X, Dong X-B, Pan Q-Y, Zhang J-C, Dong W (2006) Mater Lett 60:3137

    CAS  Article  Google Scholar 

  43. Zhang D, Qi L, Ma J, Cheng H (2002) Chem Mater 14:2450

    CAS  Article  Google Scholar 

  44. Kirboğa S, Öner M (2009) Cryst Growth & Design 9:2159

    Article  Google Scholar 

  45. Kumar N, Singh P, Kumar S (2006) Indian J Biochem Bio 43:226

    CAS  Google Scholar 

  46. Neira-Carrillo A, Vásquez-Quitral P, Fernández MS, Luengo-Ponce F, Yazdani-Pedram M, Cölfen H, Arias JL (2015) Eur. J. Inorg. Chem. 2015/7:1167

Download references

Acknowledgements

This research was supported by FONDECYT 1140660, FONDAP ACCDiS 15130011 granted by the Chilean Council for Science and technology (CONICYT) and funded by Program U-Redes, Vice-presidency of Research and Development, University of Chile. Authors M. Sánchez and P. Vásquez-Quitral also thank to CONICYT Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrónico Neira-Carrillo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neira-Carrillo, A., Vásquez-Quitral, P., Sánchez, M. et al. Control of calcium oxalate morphology through electrocrystallization as an electrochemical approach for preventing pathological disease. Ionics 21, 3141–3149 (2015). https://doi.org/10.1007/s11581-015-1558-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1558-0

Keywords

  • Mineralization
  • Electrocrystallization
  • Urolithiasis
  • Calcium oxalate
  • Polymorphism