Abstract
Pathological crystallization of calcium oxalate (CaOx) inside the urinary tract is called calculi or kidney stone (Urolithiasis). CaOx exhibits three crystalline types in nature: CaOx monohydrate COM, dihydrate COD and trihydrate COT. COD and COM are often found in urinary calculi, particularly COM. Electrocrystallization has been recently used to perform oriented crystallization of inorganic compounds such as Ca-salts. Although many mineralization methods exist, the mechanisms involved in the control of CaOx polymorphism still remain unclear. Herein, we induced selective electrocrystallization of COD by modifying the electrical current, time and electrochemical cell type. By combining above factors, we established an efficient method without the use of additives for stabilizing non-pathological CaOx crystals. We found notorious stabilization of CaOx polymorphisms with hierarchically complex shape with nano-organization assembly, size and aggregated crystalline particles. Our results demonstrated that, by using an optimized electrochemical approach, this technique could have great potential for studying the nucleation and crystal growth of CaOx through functionalized synthetic polymers, and to develop a novel pathway to evaluate new calculi preventing-compound inhibitors.

Electrocrystallization set-up for modifying the morphology and crystal growth of CaOx particles.
This is a preview of subscription content, access via your institution.




References
DiMasi E, Gower LB (2014) Biomineralization sourcebook - characterization of biominerals and biomimetic materials, 1st edn. CRC Pres, Taylor & Francis Group, Florida
Lieske J, Leonard R, Toback G (1995) Renal fluid electrolyte. Am J Physiol 37:604
Karlsen SJ, Grenabo L, Holmberg G, Colstrup H, Jorgensen TM, Lindell O, Ala-Opas M, Ulvik NM, Shultz A, Griffith DP (1995) J Urol 153:378
Wesson JA, Ward MD (2007) Elements 3:415
Neira-Carrillo A, Vásquez-Quitral P (2010) Av Cs Vet 25:41
Long LO, Park S (2007) Minerva Urol Nefrol 59:317
Monje P, Baran E (2002) Plant Physiol 128:707
Tomažic B, Nancollas GH (1979) J Cryst Growth 46:355
Wesson JA, Worcester EM, Wiessner JH, Mandel NS, Kleinman JG (1998) Kidney Int 53:952
Finlayson B (1978) Kidney Int 13:344
Benitez IO, Talham DR (2004) Langmuir 20:8287
Benitez IO, Talham DR (2005) J Am Chem Soc 127:2814
Khan SR, Whalen PO, Glenton PA (1993) J Cryst Growth 134:211
Brown CM, Novin F, Purich DL (1994) J Cryst Growth 135:523
Zhang D, Qi L, Ma J, Cheng H (2002) Chem Mater 2450:2450
Golden TD, Shumsky MG, Zhou Y, VanderWerf RA, Leeuwen RAV, Swizter JA (1996) Chem Mater 8:2499
Joseph S, Kamath PV (2008) Solid State Sci 10:1215
Rudnik E (2013) Ionics 19:1047
Saha S, Sultana S, Islam MM, Rahman MM, Mollah MYA, Susan MABH (2014) Ionics 20:1175
Gebauer D, Völkel A, Cölfen H (2008) Science 322:1819
Gebauer D, Kellermeier M, Gale JD, Bergstro L, Cölfen H (2014) Chem Soc Rev 43:2348
Windhausen AB, Swizter JA (2008) Abstracts, 64th southwest regional meeting of the american chemical society. Little Rock, AR, United States
Swizter JA (1987) Am Ceram Soc Bull 66:1521
Kajita T, Kogyo N-S (1995) Kenkyusho Kenkyu Hokoku 80:22
Kajita T (1989) Hyomen Kagaku 10:181
Joseph J, Kamath PV (2009) J Solid State Electr 14:1481
Thongboonkerd T, Semangoen T, Chutipongtanate S (2006) Clin Chim Acta 367:120
Euvrard M, Filiatre C, Crausaz E (2000) J Cryst Growth 216:466
Milchev A (2011) J Solid State Electr 15:1401
Dinamani M, Kamath PV, Seshadri R (2003) Solid State Sci 5:805
Jo K, Yu HZ, Yang H (2011) Electrochim Acta 56:4828
Yang G, Yang Y, Wang Y, Wang Y, Yu L, Zhou D, Jia J (2012) Electrochim Acta 78:200
Anipa TN, Anoop KM, Pai RK (2015) New J. Chem. DOI: 10.1039/C5NJ01350J
Zhang J, Oyama M (2005) Anal Chim Acta 540:299
Ma Y, Di J, Yan X, Zhao M, Lu Z, Tu Y (2009) Biosensors and Bioelectronics 24:1480
Pavez J, Silva J, Melo F (2005) Electrochim Acta 50:3488
Lédion J, Leroy P, Labbe JP (1985) TSM L´eau 80:323
Ketrane R, Saidani B, Gil O, Leleyter L, Baraud F (2009) Desalination 249:1397
Dickey MD, Weiss EA, Smythe EJ, Chiechi RC, Capasso F, Whitesides GM (2008) ACS Nano 2:800
Anoop KM, Mohanta K, Pai RK (2014) IEEE J Photovolt 4:1570
Aoki Y, Huang J, Kunitake T (2006) J Mater Chem 16:292
Cheng Z-X, Dong X-B, Pan Q-Y, Zhang J-C, Dong W (2006) Mater Lett 60:3137
Zhang D, Qi L, Ma J, Cheng H (2002) Chem Mater 14:2450
Kirboğa S, Öner M (2009) Cryst Growth & Design 9:2159
Kumar N, Singh P, Kumar S (2006) Indian J Biochem Bio 43:226
Neira-Carrillo A, Vásquez-Quitral P, Fernández MS, Luengo-Ponce F, Yazdani-Pedram M, Cölfen H, Arias JL (2015) Eur. J. Inorg. Chem. 2015/7:1167
Acknowledgements
This research was supported by FONDECYT 1140660, FONDAP ACCDiS 15130011 granted by the Chilean Council for Science and technology (CONICYT) and funded by Program U-Redes, Vice-presidency of Research and Development, University of Chile. Authors M. Sánchez and P. Vásquez-Quitral also thank to CONICYT Scholarship.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Neira-Carrillo, A., Vásquez-Quitral, P., Sánchez, M. et al. Control of calcium oxalate morphology through electrocrystallization as an electrochemical approach for preventing pathological disease. Ionics 21, 3141–3149 (2015). https://doi.org/10.1007/s11581-015-1558-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11581-015-1558-0