Skip to main content
Log in

Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Titanium, tantalum-substituted Li7La3Zr2-xAxO12 (LLZO, A = Ta, Ti) garnets, and chromium-substituted La(2/3)-xLi3xTi1-yCryO3 (LLTO) perovskites were prepared by a conventional solid-state reaction and the Pechini processes. The desired crystal phases were obtained by varying the calcination temperature and time, as well as the substitution concentration. All samples indicated decomposition of the precursors when heated above 750 °C and formation of the desired phase after heat treatment at higher temperatures. Neutron diffraction data shows the formation of a predominant cubic phase in the case of Ta-LLZO, and monoclinic phase with minor impurity phases for Cr-LLTO. Ionic conductivity for Ti-LLZO (Li7La3Zr1.4Ti0.6O12), Ta-LLZO (Li6.03La3Zr1.533Ta0.46O12), and Cr-LLTO (La(2/3)-xLi3xTi0.9Cr0.1O3) at room temperature were found to be 5.21 × 10−6, 1.01 × 10−6, and 1.2 × 10−4 S cm−1, respectively. The activation energies of the compounds were determined from the Arrhenius plot and were 0.44 eV (Ti0.6-LLZO), 0.54 eV (Ta0.5-LLZO), and 0.20 eV (Cr0.1-LLTO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fergus JW (2010) J Power Sources 195:4554

    Article  CAS  Google Scholar 

  2. Thangadurai V, Kaack H, Weppner W (2003) J Am Ceram Soc 86(3):437

    Article  CAS  Google Scholar 

  3. Murugan R, Thangadurai V, Weppner W (2008) Appl Phys A 91:615

    Article  CAS  Google Scholar 

  4. Murugan R, Weppner W, Schmid-Beurmann P, Thangadurai V (2007) Mater Sci Eng B143:14

    Article  Google Scholar 

  5. Murugan R, Thangadurai V, Weppner W (2007) Ionics 13:195

    Article  CAS  Google Scholar 

  6. Gupta A, Murugan R, Paranthaman MP, Bi Z, Bridges CA, Nakanishi M, Sokolov AP, Han KS, Hagaman EW, Xie H, Mullins CB, Goodenough JB (2012) J Power Sources 209:184

    Article  CAS  Google Scholar 

  7. Latie L, Villeneuve G, Conte D, Flem GL (1984) J Solid State Chem 51:293

    Article  CAS  Google Scholar 

  8. Zaib T, Ortnet M, Murugan R, Weppner W (2009) Ionics 16:855

    Google Scholar 

  9. Awaka J, Kijima N, Kataoka K, Hayakawa H, Ohshima K, Akimoto J (2010) J Solid State Chem 183:180

    Article  CAS  Google Scholar 

  10. Percival J, Kendrick E, Smith RI, Slater PR (2009) Dalton Trans 26:5177

    Article  Google Scholar 

  11. Rangasamy E, Wolfenstine J, Sakamoto J (2012) Solid State Ionics 206:28

    Article  CAS  Google Scholar 

  12. Galven C, Fourquet JL, Crosnier-Lopez MP, Le Berre F (2011) Chem Mater 23:1892

    Article  CAS  Google Scholar 

  13. Kumazaki S, Iriyama Y, Kim K-H, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) Electrochem Commun 13:509

    Article  CAS  Google Scholar 

  14. Murugan R, Thangadurai V, Weppner W (2007) Angew Chem Int Ed 46:7778

    Article  CAS  Google Scholar 

  15. Belous AG, Novitskaya GN, Polyanetskaya SV, Gornikov YI (1987) Izv Akad Russ J Inorg Chem 32:470

    Google Scholar 

  16. Kawai H, Kuwano J (1994) J Electrochem Soc 141:L78

    Article  CAS  Google Scholar 

  17. Harada Y, Hirakoso Y, Kawai H, Kuwano J (1999) Solid State Ionics 121:245

    Article  CAS  Google Scholar 

  18. Inaguma Y, Itoh M (1996) Solid State Ionics 86–8:257

    Article  Google Scholar 

  19. Kunugi S, Inaguma Y, Itoh M (1999) Solid State Ionics 122:35

    Article  CAS  Google Scholar 

  20. Ibarra J, Varez A, Leon C, Santamaria J, Torres-Martinez LM, Sanz J (2000) Solid State Ionics 134:219

    Article  CAS  Google Scholar 

  21. Ban CW, Choi GM (2001) Solid State Ionics 140:285

    Article  CAS  Google Scholar 

  22. Inaguma Y, Katsumata T, Itoh M, Morii Y (2002) J Solid State Chem 166(18):67

    Article  CAS  Google Scholar 

  23. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Inorg Chem 50:1089

    Article  CAS  Google Scholar 

  24. Bi Z, Bridges CA, Kim J-H, Huq A, Paranthaman MP (2011) J Power Sources 196:7395

    Article  CAS  Google Scholar 

  25. Li Y, Wang C-A, Xie H, Cheng J, Goodenough JB (2011) Electrochem Commun 13:1289

    Article  CAS  Google Scholar 

  26. Li Y, Cao Y, Guo X (2013) Solid State Ionics 253:76

    Article  CAS  Google Scholar 

  27. Toby BH (2001) J Appl Crystallogr 34(2):210

    Article  CAS  Google Scholar 

  28. Stramare S, Thangadurai V, Weppner W (2003) Chem Mater 15:3974

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Vehicle Technology Program (EERE), Oak Ridge Institute for Science and Education (ORISE), and Mickey Leland Energy Fellowship (MLEF) programs. A portion of this research at ORNL’s Spallation Neutron Source was sponsored by the US Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division. Support (MPP and YL) for Neutron characterizations and impedance measurements was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manivannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu-Sepúlveda, M., Williams, D.E., Huq, A. et al. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes. Ionics 22, 317–325 (2016). https://doi.org/10.1007/s11581-015-1556-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1556-2

Keywords

Navigation