Skip to main content
Log in

Voltammetric behavior of bupirimate fungicide and its square wave voltammetric determination

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The voltammeric behavior of bupirimate fungicide has been studied by square wave stripping voltammetry (SWSV). The insoluble R–HgS salt (where R is the bupirimate frame excluding sulfur) formed on the static hanging mercury drop electrode (SHMDE) was electrochemically reduced by giving a fairly well defined cathodic peak within the pH range of 1.0 to 8.0. The peak potentials (E p) were shifted toward more negative values with increasing pH, and a maximum peak response appeared at −1320 mV (vs. Ag/AgCl) at a pH 6.0. The calibration plot was a straight line in the range of 0.013 to 9.43 mg L−1. The detection limit at pH 6.0 was measured as 4.0 μg L−1 under the conditions of E acc = −700 mV and t acc = 10 s. The validity of the recommended method was assessed from the recoveries of spiked tap water, natural peach juice, and commercial peach juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ernst GF, Heutink R, Verveld-Röder SY (1979) Gas chromatographic determination of bupirimate in apples and pears. J Chromatogr A 179:351–354. doi:10.1016/S0021-9673(00)83840-6

    Article  CAS  Google Scholar 

  2. Dedola F, Cabizza M, Satta M (2014) Determination of 28 pesticides applied on two tomato cultivars with a different surface/weight ratio of the berries, using a multiresidue GC-MS/MS method. J Environ Sci Health B 49:671–678. doi:10.1080/03601234.2014.922775

    Article  CAS  Google Scholar 

  3. Soler C, Manes J, Pico Y (2005) Routine application using single quadrupole liquid chromatography–mass spectrometry to pesticides analysis in citrus fruits. J Chromatogr A 1088:224–233. doi:10.1016/j.chroma.2005.03.106

    Article  CAS  Google Scholar 

  4. Soler C, Manes J, Pico Y (2005) Comparison of liquid chromatography using triple quadrupole and quadrupole ion trap mass analyzers to determine pesticide residues in oranges. J Chromatogr A 1067:115–125. doi:10.1016/j.chroma.2004.10.032

    Article  CAS  Google Scholar 

  5. Sannino A (2004) Evaluation of a method based on liquid chromatography/electrospray tandem mass spectrometry for analyzing eight triazolic and pyrimidine fungicides in extracts of processed fruits and vegetables. J AOAC Int 87(4):991–996

    CAS  Google Scholar 

  6. Ortelli D, Edder P, Corvi C (2004) Multiresidue analysis of 74 pesticides in fruits and vegetables by liquid chromatography–electrospray–tandem mass spectrometry. Anal Chim Acta 520(1–2):33–45. doi:10.1016/j.aca.2004.03.037

    Article  CAS  Google Scholar 

  7. Bui MPN, Seo SS (2015) Electrochemical analysis of parathion-ethyl using zirconium oxide–laponite nanocomposites-modified glassy carbon electrode. J Appl Electrochem 45(4):365–373. doi:10.1007/s10800-015-0789-0

    Article  CAS  Google Scholar 

  8. İnam R, Tekalp F (2012) Square wave voltammetric determination of diafenthiuron and its application to water, soil and insecticide formulation. Int J Environ Anal Chem 92(1):85–95. doi:10.1080/03067319.2010.520126

    Article  Google Scholar 

  9. Galli A, De Souza D, Machado SAS (2011) Pendimethalin determination in natural water, baby food and river sediment samples using electroanalytical methods. Microchem J 98(1):135–143. doi:10.1016/j.microc.2010.12.009

    Article  CAS  Google Scholar 

  10. Thriveni T, Sreedhar NY (2004) Differential pulse adsorptive stripping voltammetric determination of permethrin using hanging mercury drop electrode. Bull Electrochem 20(11):517–523

    CAS  Google Scholar 

  11. Pascual CB, Vicente-Beckett VA (1989) Electrochemistry of triphenyltin acetate at a mercury-film glassy-carbon electrode. Anal Chim Acta 224(1):97–108. doi:10.1016/S0003-2670(00)83448-0

    Article  CAS  Google Scholar 

  12. Demir E, İnam R, Özkan SA, Uslu B (2014) Electrochemical behavior of tadalafil on TiO2 nanoparticles MWCNT composite paste electrode and determination in pharmaceutical dosage forms and human serum samples using adsorptive stripping square wave voltammetry. J Solid State Electrochem 18:2709–2720. doi:10.1007/s10008-014-2529-5

    Article  CAS  Google Scholar 

  13. Fischer J, Dejmkova H, Barek J (2011) Electrochemistry of pesticides and its analytical applications. Curr Org Chem 15(17):2923–2935. doi:10.2174/138527211798357146

    Article  CAS  Google Scholar 

  14. European Food Safety Authority (2014) Reasoned opinion on the modification of the existing MRLs for bupirimate in several crops. EFSA J 12:3804. doi:10.2903/j.efsa.2014.3804

    Google Scholar 

  15. Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH, New York

    Google Scholar 

  16. European Food Safety Authority (2010) Conclusion on the peer review of the pesticide risk assessment of the active substance bupirimate. EFSA J 8(10):1786.

  17. Davison W, Buffle J, Devitre R (1988) Interpretation of speciation measurements—a case-study—direct polarographic-determination of O2, Fe(II), Mn(II), S(–II) and related species in anoxic waters. Pure Appl Chem 60:1535–1548

    Article  CAS  Google Scholar 

  18. Stara V, Kopanica M (1984) Adsorptive stripping voltammetric determination of thiourea and thiourea derivatives. Anal Chim Acta 159:105–110. doi:10.1016/S0003-2670(00)84286-5

    Article  CAS  Google Scholar 

  19. Currie LA (1999) International recommendations offered on analytical detection and quantification concepts and nomenclature. Anal Chim Acta 391(2):103. doi:10.1016/S0003-2670(99)00103-8

    Article  CAS  Google Scholar 

  20. Currie LA (1999) Nomenclature in evaluation of analytical methods including detection and quantification capabilities :(IUPAC Recommendations 1995). Anal Chim Acta 391(2):105–126. doi:10.1016/S0003-2670(99)00104-X

    Article  CAS  Google Scholar 

  21. Morzycka B (2002) Multiresidue matrix solid-phase dispersion method for the determination of fungicides in fruits and vegetables. Chem Anal 47(4):571–583

    CAS  Google Scholar 

  22. Cao CF, Wang Z, Urruty L, Pommier JJ, Montury M (2001) Focused microwave assistance for extracting some pesticide residues from strawberries into water before their determination by SPE/HPLC/DAD. J Agric Food Chem 49(11):5092–5097. doi:10.1021/jf010519u

    Article  Google Scholar 

  23. Bolygo E, Atreya NC (1991) Solid-phase extraction for multi-residue analysis of some triazole and pyrimidine pesticides in water. Fresenius J Anal Chem 339(6):423–430. doi:10.1007/BF00322364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recai İnam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, E., İnam, R. Voltammetric behavior of bupirimate fungicide and its square wave voltammetric determination. Ionics 22, 269–276 (2016). https://doi.org/10.1007/s11581-015-1544-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1544-6

Keywords

Navigation