Advertisement

Ionics

, Volume 22, Issue 1, pp 99–105 | Cite as

Anatase TiO2 nanotube by electrochemical anodization method: effect of tubes dimension on the supercapacitor application

  • A. Tamilselvan
  • S. BalakumarEmail author
Original Paper

Abstract

This study investigates the suitability of titanium dioxide (TiO2) nanotubes for supercapacitor application. For this purpose, electrochemical anodization technique has been employed. In order to obtain the nanotubes with different dimensions, the quantity of ethylene glycol (Eg) and glycerol (Gy) were varied in the concentration ratio 70:30 (E7G3) and 50:50 (E5G5), respectively. The tube length and pore diameter of the nanotubes are found to be 7.6 μm and 96 nm for E5G5 and 9.1 μm and 110 nm for E7G3 samples. Nanostructured materials with high surface area show strong influence in modifying their specific capacitance. Hence, both samples exhibit good charge storage and electrochemical double-layer capacitor (EDLC) behavior which was confirmed by cyclic voltammetry studies. But, E7G3 samples have shown maximum areal specific capacitance of 1300 μF/cm2 at a scanning rate of 20 mV/s, which was mainly due to its availability of more active sites for ions adsorption on the nanotube surface.

Keywords

TiO2 nanotubes High surface area Specific capacitance Electrochemical double-layer capacitor 

Notes

Acknowledgments

The authors acknowledge the UGC, India, for funding this project.

References

  1. 1.
    Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalk-wijk W (2005) Nat Mater 4:366–377CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845–854CrossRefGoogle Scholar
  3. 3.
    Miller JR, Simon P (2008) Science 321:651–652CrossRefGoogle Scholar
  4. 4.
    Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  5. 5.
    Liu R, Duay J, Lee SB (2011) Chem Commun 47:1384–1404CrossRefGoogle Scholar
  6. 6.
    Lee J-S, Kim S-I, Yoon J-C, Jang J-H (2013) ACS Nano 7:6047–6055CrossRefGoogle Scholar
  7. 7.
    Chenguang L, Zhenning Y, David N, Aruna Z, Bor ZJ (2010) Nano Lett 10:4863–4868CrossRefGoogle Scholar
  8. 8.
    Zhang JT, Ma JZ, ZhangLL GPZ, Jiang JW, Zhao XS (2010) J Phys Chem C 114:13608–13613CrossRefGoogle Scholar
  9. 9.
    Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Adv Funct Mater 20:3595–3602CrossRefGoogle Scholar
  10. 10.
    Zhu J, He J (2012) ACS Appl Mater Interfaces 4:1770–1776CrossRefGoogle Scholar
  11. 11.
    Broughton JN, Brett MJ (2004) Electrochim Acta 49:4439–4446CrossRefGoogle Scholar
  12. 12.
    Wang SY, Ho KC, Kuo SL, Wu NL (2006) J Electrochem Soc 153:A75–A80CrossRefGoogle Scholar
  13. 13.
    Liang K, Tang X, Hu W (2012) J Mater Chem 22:11062–11067CrossRefGoogle Scholar
  14. 14.
    PY M, Dong S, Nebojsa SM, T X (2012) J Electrochem Soc 159:A1598–A1603CrossRefGoogle Scholar
  15. 15.
    Roy P, Berger S, Schmuki P (2011) Angew Chem Int Ed 50:2904–2939CrossRefGoogle Scholar
  16. 16.
    Roy P, Kim D, Lee K, Spiecker E, Schmuki P (2010) Nanoscale 2:45–59CrossRefGoogle Scholar
  17. 17.
    Smith YR, Kar A, Subramanian V(R) (2009) Ind Eng Chem Res 48:10268–10276CrossRefGoogle Scholar
  18. 18.
    Galstyan V, Comini E, Faglia G, Sberveglieri G (2013) Sensors 13:14813–14838CrossRefGoogle Scholar
  19. 19.
    Ghicov A, Tsuchiya H, Hahn R, Macak JM, Muñoz AG, Schmuki P (2006) Electrochem Commun 8:528–532CrossRefGoogle Scholar
  20. 20.
    Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D (2013) Nanotechnology 24:455401CrossRefGoogle Scholar
  21. 21.
    Endut Z, Hamdi M, Basirun WJ (2013) Surf Coat Technol 215:75–78CrossRefGoogle Scholar
  22. 22.
    Wang J, Polleux J, Lim J, Dunn B (2007) J Phys Chem C 111:14925–14931CrossRefGoogle Scholar
  23. 23.
    Ananthakumar R, Sang JK (2013) J Alloys Compd 561:262–267CrossRefGoogle Scholar
  24. 24.
    Maryam S, Seyed HA, Konstantin K, Hua KL (2011) Phys Chem Chem Phys 13:5038–5041CrossRefGoogle Scholar
  25. 25.
    Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA (2008) J Am Chem 130:11312–11316CrossRefGoogle Scholar
  26. 26.
    Pan D, He H, Wang X, Liang W, Liao H, Li Z, Wu M (2014) J Mater Chem A 2:11454–11464CrossRefGoogle Scholar
  27. 27.
    de Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K (2006) J Phys Chem B 110:25347–25355CrossRefGoogle Scholar
  28. 28.
    Min SK, Tae-Woo L, Jong Hyeok Park J (2009) Electrochem Soc 156(7):A584–A588CrossRefGoogle Scholar
  29. 29.
    Xie ZB, Adams S, Blackwood DJ, Wang J (2008) Nanotechnology 19:405701CrossRefGoogle Scholar
  30. 30.
    Wang J, Lin Z (2009) J Phys Chem C 113:4026–4030CrossRefGoogle Scholar
  31. 31.
    Salari M, Konstantinov K, Liu HK (2011) J Mater Chem 21:5128–5133CrossRefGoogle Scholar
  32. 32.
    Bersani D, Lottici PP (1998) Appl Phys Lett 72:73CrossRefGoogle Scholar
  33. 33.
    Bassi AL, Cattaneo D, Russo V, Bottani CE, Bartoriri E, Mazza T, Pisen P, Midani P, Ernst FO, Wegner K, Pratsinis SE (2005) J Appl Phys 98:074305CrossRefGoogle Scholar
  34. 34.
    Soon HK, Jae-Yup K, Hyun SK, Yung-Eun S (2008) J Ind Eng Chem 14:52–59CrossRefGoogle Scholar
  35. 35.
    Jin KH, Yong CC, Jin HK, Sang DB (2013) Ferroelectrics 454:29–34CrossRefGoogle Scholar
  36. 36.
    Zixue S, Zhou W (2008) Adv Mater 20:3663–3667CrossRefGoogle Scholar
  37. 37.
    Gosta A (1932) J Am Chem Soc 54:4125–4139CrossRefGoogle Scholar
  38. 38.
    Leela Mohana Reddy A, Ramaprabhu S (2007) J Phys Chem C 111:7727–7734CrossRefGoogle Scholar
  39. 39.
    Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y (2012) Nano Lett 12:1690–1696CrossRefGoogle Scholar
  40. 40.
    Gouerec P, Talbi H, Miousse D, Tran-Van F, Dao LH, Lee KH (2001) J Electrochem Soc 148:A94–A101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.National Centre for Nanoscience and NanotechnologyUniversity of Madras, Guindy CampusChennai -25India

Personalised recommendations