Skip to main content
Log in

Synthesis, characterization, and electrochemical properties of smectic pyridinium salts with inorganic dihydrogen phosphate ions

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Pyridinium salts with inorganic dihydrogen phosphate ions (CnPy-DHP) were derived from biphenyl benzoate-based precursors bearing terminal alkoxy chains. Molecular structures of the pyridinium salts were characterized by 31P magic-angle spinning nuclear magnetic resonance (31P MAS NMR) spectroscopy, elemental analysis, and Fourier transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry (DSC) measurements and polarizing optical microscopic (POM) observations indicated that the pyridinium salts exhibited smectic A (SA) phase at intermediate temperatures (above 159 °C). X-ray diffraction (XRD) measurements suggested that the pyridinium salts formed a bilayer structure with head-to-head configuration in the SA phase. Electrochemical impedance spectrum (EIS) measurements using indium tin oxide (ITO) electrodes showed that ionic conductivities of the pyridinium salts increased with the decrease in length of alkoxy chains and approached 7.0 × 10−5 S/cm in the SA phase. Wagner’s DC polarization measurements using manganese (IV) oxide (MnO2) electrodes confirmed the presence of proton conduction in the pyridinium salts. The steady state currents resulted from DC polarization revealed that the SA phase favored proton conduction. The temperature dependence of the ionic conductivity followed Arrhenius law, and the proton transport in the SA phase was supposed to occur by hopping of dissociated protons along layered pathways formed by pyridinium cations and dihydrogen phosphate ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39

    Article  CAS  Google Scholar 

  2. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. J Hydrogen Energy 35:9349–9384

    Article  CAS  Google Scholar 

  3. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  CAS  Google Scholar 

  4. Motupally S, Becker AJ, Weidner JW (2000) Diffusion of water in Nafion 115 membranes. J Electrochem Soc 147:3171–3177

    Article  CAS  Google Scholar 

  5. Schuster MFH, Meyer WH (2003) Anhydrous proton-conducting polymers. Annu Rev Mater Res 33:233–261

    Article  CAS  Google Scholar 

  6. Yang B, Manohar A, Surya-Prakash GK et al (2011) Anhydrous proton-conducting membrane based on poly-2-vinylpyridinium dihydrogen phosphate for electrochemical applications. J Phys Chem B 115:14462–14468

    Article  CAS  Google Scholar 

  7. Tiitu M, Torkkeli M, Serimaa R et al (2005) Self-assembly and flow alignment of protonically conducting complexes of polystyrene-block-poly(4-vinylpyridine) diblock copolymer with phosphoric acid. Solid State Ion 176:1291–1299

    Article  CAS  Google Scholar 

  8. Chow CF, Roy VAL, Roy Z et al (2010) Novel high proton conductive material from liquid crystalline 4-(octadecyloxy)phenylsulfonic acid. J Mater Chem 6245–6249

  9. Soberats B, Yoshio M, Ichikawa T et al (2013) 3D Anhydrous proton-transporting nanochannels formed by self-assembly of liquid crystals composed of a sulfobetaine and a sulfonic acid. J Am Chem Soc 135:15286–15289

    Article  CAS  Google Scholar 

  10. Tan S, Wang C, Wu Y (2013) Anisotropic assembly of a side chain liquid crystal polymer containing sulfoalkoxy groups for anhydrous proton conduction. J Mater Chem A 1:1022–1025

    Article  CAS  Google Scholar 

  11. Kato T, Mizoshita N, Kishimoto K (2006) Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed 45:38–68

    Article  CAS  Google Scholar 

  12. Kawatsuki N, Sakashita S, Takatani K et al (1996) Synthesis, characterization and photoreaction of side-chain liquid-crystalline polymers comprising cinnamoyl biphenyl mesogen. Macromol Chem Phys 197:1919–1935

    Article  CAS  Google Scholar 

  13. Kato T, Fréchet JMJ (1989) New approach to mesophase stabilization through hydrogen-bonding molecular interactions in binary mixtures. J Am Chem Soc 111:8533–8535

    Article  CAS  Google Scholar 

  14. Woo HJ, Majid SR, Arof AK (2011) Transference number and structural analysis of proton conducting polymer electrolyte based on poly(ε-caprolactone). Mater Res Innov 15:S49–S54

    Article  Google Scholar 

  15. Shukur MF, Kadir MFZ (2014) Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics 21:111–124

    Article  Google Scholar 

  16. Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Phys B 357:412–419

    Article  CAS  Google Scholar 

  17. Zhang R, Edgar KJ (2014) Synthesis of curdlan derivatives regioselectively modified at C-6: O-(N)-acylated 6-amino-6-deoxycurdlan. Carbohydr Polym 105:161–168

    Article  CAS  Google Scholar 

  18. Puziy AM, Poddubnaya OI, Socha RP et al (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46:2113–2123

    Article  CAS  Google Scholar 

  19. Kaabi K, Rayes A, Nasr CB et al (2003) Synthesis and crystal structure of a new dihydrogenomonophosphate (4-C2H5C6H4NH3) H2PO4. Mater Res Bull 38:741–747

    Article  CAS  Google Scholar 

  20. Erdemi H, Akbey U, Meyer WH (2010) Conductivity behavior and solid state NMR investigation of imidazolium-based polymeric ionic liquids. Solid State Ion 181:1586–1596

    Article  CAS  Google Scholar 

  21. Kosonen H, Valkama S, Ruokolainen J et al (2003) One-dimensional optical reflectors based on self-organization of polymeric comb-shaped supramolecules. Eur Phys J E 10:69–75

    Article  CAS  Google Scholar 

  22. Narayanan SR, Yen SP, Liu L et al (2006) Anhydrous proton-conducting polymeric electrolytes for fuel cells. J Phys Chem B 110:3942–3948

    Article  CAS  Google Scholar 

  23. Kawahara M, Morita J, Rikukawa M et al (2000) Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules. Electrochim Acta 45:1395–1398

    Article  CAS  Google Scholar 

  24. Stevens JR, Wieczorek W, Raducha D et al (1997) Proton conducting gel /H3PO4 electrolytes. Solid State Ion 97:347–358

    Article  CAS  Google Scholar 

  25. Yamada M, Honma I (2003) Proton conducting acid/base mixed materials under water-free condition. Electrochim Acta 48:2411–2415

    Article  CAS  Google Scholar 

  26. Kubelková L, Kotrla J, Florián J (1995) H-bonding and interaction energy of acetonitrile neutral and pyridine ion-pair surface complexes in zeolites of various acidity: FTIR and ab initio study. J Phys Chem 99:10285–10293

    Article  Google Scholar 

  27. Buzzoni R, Bordiga S, Ricchiardi et al (1996) Interaction of pyridine with acidic (H-ZSM5, H-β, H-MORD Zeolites) and superacidic (H-Nafion membrane) systems: an IR investigation. Langmuir 12:930–940

    Article  CAS  Google Scholar 

  28. Qian X, Gu N, Cheng Z et al (2001) Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836

    Article  CAS  Google Scholar 

  29. Soboleva T, Xie Z, Shi Z et al (2008) Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. J Electroanal Chem 622:145–152

    Article  CAS  Google Scholar 

  30. Mikhailenko SD, Guiver MD, Kaliaguine S (2008) Measurements of PEM conductivity by impedance spectroscopy. Solid State Ion 179:619–624

    Article  CAS  Google Scholar 

  31. Iwana A, Palewicza M, Sikoraa A et al (2010) Aliphatic–aromatic poly(azomethine)s with ester groups as thermotropic materials for opto(electronic) applications. Syth Met 160:1856–1867

    Google Scholar 

  32. Yamada M, Honma I (2004) Anhydrous protonic conductivity of a self-assembled acid–base composite material. J Phys Chem B 108:5522–5526

    Article  CAS  Google Scholar 

  33. Baskaran R, Selvasekarapandian S, Hirankumar G et al (2004) Vibrational, ac impedance and dielectric spectroscopic studies of poly(vinylacetate)–N,N–dimethylformamide–LiClO4 polymer gel electrolytes. J Power Sources 134:235–240

    Article  CAS  Google Scholar 

  34. Cahill LS, Rana UA, Forsyth M et al (2010) Investigation of proton dynamics and the proton transport pathway in choline dihydrogen phosphate using solid-state NMR. Phys Chem Chem Phys 12:5431–5438

    Article  CAS  Google Scholar 

  35. Ma YL, Wainright JS, Litt MH et al (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:A8–A16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Tan, S., Liang, T. et al. Synthesis, characterization, and electrochemical properties of smectic pyridinium salts with inorganic dihydrogen phosphate ions. Ionics 22, 85–92 (2016). https://doi.org/10.1007/s11581-015-1524-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1524-x

Keywords

Navigation