Advertisement

Ionics

, Volume 21, Issue 9, pp 2623–2631 | Cite as

NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life

  • N. Padmanathan
  • S. Selladurai
  • K. Mani Rahulan
  • Colm O’Dwyer
  • Kafil M. Razeeb
Original Paper

Abstract

A 3D hierarchical NiO nanostructures with combined microstructure of nanoflakes and nanoflowers have been fabricated on carbon fibre cloth (CFC). Unique nano-micro structural features of NiO/CFC electrode showed an enhanced electrochemical activity in organic electrolyte (1 M tetraethylammonium tetrafluorborate (TEABF4) in propylene carbonate) in terms of rate capability, specific energy and power performance as well as potential limit. The electrode showed a specific capacitance of 170 Fg−1 for a current density of 5 Ag−1. Configured as a two-electrode symmetric supercapacitor, the device showed a specific capacitance of 34.9 Fg−1 at 1 Ag−1 current density. It delivered a maximum specific energy density of 19.4 Wh kg−1 at a high power density of 1002.8 W kg−1 at a constant current density of 1 Ag−1. The cell is also capable of long-term cycling stability with an efficiency of 58 % after 25,000 cycles with a potential window of 0 to ±2 V. This superior electrochemical activity of the NiO electrode is due to their structural benefits of well-connected hybrid nano/mesoporous structure and rapid ion intercalation within the porous electrode surface.

Keywords

Nickel oxide Nanomaterials Flexible electrode Pseudocapacitor Supercapacitor 

Notes

Acknowledgments

The author acknowledges the financial support from EU FP7 project MANpower (contract number: 604360) to carry out this work.

Supplementary material

11581_2015_1444_MOESM1_ESM.doc (683 kb)
ESM 1 (DOC 683 kb)

References

  1. 1.
    Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845–854CrossRefGoogle Scholar
  3. 3.
    Miller JR, Simon P (2008) Science 321:651–652CrossRefGoogle Scholar
  4. 4.
    Osiak M, Geaney H, Armstrong E, O’Dwyer C (2014) J Mater Chem A 2:9433–9460CrossRefGoogle Scholar
  5. 5.
    Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang G (2013) Nat Commun 4:18904Google Scholar
  6. 6.
    Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Nat Mater 9:146–151CrossRefGoogle Scholar
  7. 7.
    Toupin M, Brousse T, Belanger D (2004) Chem Mater 16:3184–3190CrossRefGoogle Scholar
  8. 8.
    Long JW, Dunn B, Rolison DR, White HS (2004) Chem Rev 104:4463–4492CrossRefGoogle Scholar
  9. 9.
    Wang J, Polleux J, Lim J, Dunn B (2007) J Phys Chem C 111:14925–14931CrossRefGoogle Scholar
  10. 10.
    Xiang Y, Lu S, Jiang SP (2012) Chem Soc Rev 41:7291–7321CrossRefGoogle Scholar
  11. 11.
    Gao Y, Zhou YS, Xiong W, Jiang LJ, Mahjouri-samani M, Thirugnanam P, Huang X, Wang MM, Jiang L, Lu YF (2013) APL Mat 1:012101CrossRefGoogle Scholar
  12. 12.
    Chen YC, Hsu YK, Lin YG, Lin YK, Horng YY, Chen LC, Chen KH (2011) Electrochim Acta 56:7124–7130CrossRefGoogle Scholar
  13. 13.
    Padmanathan N, Selladurai S (2014) RSC Adv 4:8341–8349CrossRefGoogle Scholar
  14. 14.
    Feng L, Zhu Y, Ding H, Ni C (2014) J Power Sources 267:430–444CrossRefGoogle Scholar
  15. 15.
    Cheng S, Yang L, Liu Y, Lin W, Huang L, Chen D, Wong CP, Liu M (2013) J Mater Chem A1:7709–7716CrossRefGoogle Scholar
  16. 16.
    Peng X, Peng L, Wu C, Xie Y (2014) Chem Soc Rev 43:3303–3323CrossRefGoogle Scholar
  17. 17.
    Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Nano Lett 7:281–286CrossRefGoogle Scholar
  18. 18.
    Fan Shi L, Li X-W, Chang-dong G, Jiang-ping T (2014) RSC Adv 4:41910–41921CrossRefGoogle Scholar
  19. 19.
    Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Science 340:1226419CrossRefGoogle Scholar
  20. 20.
    Zhang G, Lou XW (2013) Adv Mater 25:976–979CrossRefGoogle Scholar
  21. 21.
    Zhu J, Jiang J, Liu J, Ding R, Ding H, Feng Y, Wei G, Huang X (2011) J Solid State Chem 184:578–583CrossRefGoogle Scholar
  22. 22.
    Hasan M, Jamal M, Razeeb KM (2012) Electrochim Acta 60:193–200CrossRefGoogle Scholar
  23. 23.
    Kim JH, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Nano Lett 10:4099–4104CrossRefGoogle Scholar
  24. 24.
    Dam DT, Wang X, Lee JM (2013) Nano Energ 2:1303–1313CrossRefGoogle Scholar
  25. 25.
    Lu Z, Chang Z, Liu J, Sun X (2011) Nano Res 4(7):658–665CrossRefGoogle Scholar
  26. 26.
    Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XW (2012) Adv Funct Mater 22:4592–4597CrossRefGoogle Scholar
  27. 27.
    Gupta V, Gupta S, Miura N (2010) J Power Sources 195:3757–3760CrossRefGoogle Scholar
  28. 28.
    Wang H, Wang X (2013) ACS Appl Mater Interfaces 5:6255–6260CrossRefGoogle Scholar
  29. 29.
    Junyi J, Li Li Z, Hengxing J, Yang L, Xin Z, Xin B, Xiaobin F, Fengbao Z, Ruoff RS (2011) ACS Nano 7:6237–6243Google Scholar
  30. 30.
    Zhao J, Chen J, Xu S, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) J Mater Chem A 1:8836–8843CrossRefGoogle Scholar
  31. 31.
    Li Y, Fu ZY, Su BL (2012) Adv Funct Mater 22:4634–4667CrossRefGoogle Scholar
  32. 32.
    Gao F, Wei Q, Yang J, Bi H, Wang M (2013) Ionics 19:1883–1889CrossRefGoogle Scholar
  33. 33.
    Padmanathan N, Selladurai S (2014) Ionics 20:409–420CrossRefGoogle Scholar
  34. 34.
    Xia X, Jiangping T, Mai Y, Chen R, Wang X, Changdong G, Zhao X (2011) Chem Eur J 17:10898–10905CrossRefGoogle Scholar
  35. 35.
    Qian Y, Liu R, Wang Q, Xu J, Chen D, Shen G (2014) J Mater Chem A 2:10917–10922CrossRefGoogle Scholar
  36. 36.
    Lua W, Qu L, Henry K, Dai L (2009) J Power Sources 189:1270–1277CrossRefGoogle Scholar
  37. 37.
    Sellam, Hashmi SA (2013) ACS Appl Mater Interfaces 5:3875–3883CrossRefGoogle Scholar
  38. 38.
    Coadou E, Timperman L, Jacquemin J, Galiano H, Hardacre C, Anouti M (2013) J Phys Chem C 117:10315–10325CrossRefGoogle Scholar
  39. 39.
    Luan F, Wang G, Ling Y, Lu X, Wang H, Tong Y, Liu XX, Li Y (2013) Nanoscale 5:7984–7990CrossRefGoogle Scholar
  40. 40.
    Dam DT, Lee JM (2013) Electrochim Acta 108:617–623CrossRefGoogle Scholar
  41. 41.
    McNulty D, Buckley DN, O’Dwyer C (2014) J Electrochem Soc 161:A1321–A1329CrossRefGoogle Scholar
  42. 42.
    Cao CY, Guo W, Cui ZM, Song WG, Cai W (2011) J Mater Chem 21:3204–3209CrossRefGoogle Scholar
  43. 43.
    Wang YG, Xia YY (2006) Electrochim Acta 51:3223–3227CrossRefGoogle Scholar
  44. 44.
    Yang CM, Kim YJ, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2007) J Am Chem Soc 129:20CrossRefGoogle Scholar
  45. 45.
    Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Shanthi M, Yaping W, Stephen P, Brandon C, Ruoff RS (2012) Nano Lett 12:1806–1812CrossRefGoogle Scholar
  46. 46.
    Dey AN, Sullivan BB (1970) J Electrochem Soc 117:222–224CrossRefGoogle Scholar
  47. 47.
    Xing L, Wang C, Li W, Mengqing X, Meng X, Zhao S (2009) J Phys Chem B 113:5181–5187CrossRefGoogle Scholar
  48. 48.
    Padmanathan N, Selladurai S (2015) KM Razeeb. RSC Adv 5:12700–12709CrossRefGoogle Scholar
  49. 49.
    Xia H, Meng YS, Yuan G, Cui C, Li L (2012) Electrochem Solid-State Lett 15(4):A60–A63CrossRefGoogle Scholar
  50. 50.
    Burke A (2007) Electrochim Acta 53:1083–1091CrossRefGoogle Scholar
  51. 51.
    Zhang YQ, Xia XH, Tu JP, Mai YJ, Shi SJ, Wang XL, Gu CD (2012) J Power Sources 199:413–417CrossRefGoogle Scholar
  52. 52.
    Gao Z-H, Zhang H, Cao G-P, Han M-F, Yang Y-S (2013) Electrochim Acta 87:375–380CrossRefGoogle Scholar
  53. 53.
    Liang K, Tang X, Wencheng H (2012) J Mater Chem 22:11062–11067CrossRefGoogle Scholar
  54. 54.
    Pang H, Shi Y, Jimin D, Ma Y, Li G, Chen J, Zhang J, Zheng H, Yuan B (2012) Electrochim Acta 85:256–262CrossRefGoogle Scholar
  55. 55.
    Tanga Y, Liua Y, Yua S, Zhaoa Y, Mub S, Gao F (2014) Electrochim Acta 123:158–166CrossRefGoogle Scholar
  56. 56.
    Kim BK, Chabot V, Yu A (2013) Electrochim Acta 109:370–380CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • N. Padmanathan
    • 1
    • 2
  • S. Selladurai
    • 2
  • K. Mani Rahulan
    • 3
  • Colm O’Dwyer
    • 1
    • 4
  • Kafil M. Razeeb
    • 1
  1. 1.Tyndall National InstituteUniversity College CorkCorkIreland
  2. 2.Ionics Lab, Department of PhysicsAnna UniversityChennaiIndia
  3. 3.Department of Physics and NanotechnologySRM UniversityChennaiIndia
  4. 4.Department of ChemistryUniversity College CorkCorkIreland

Personalised recommendations