Skip to main content
Log in

XRD, impedance, and Mössbauer spectroscopy study of the Li3Fe2(PO4)3 + Fe2O3 composite for Li ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The synthesis procedure of the Li3Fe2(PO4)3 + Fe2O3 composite is presented. The monoclinic (A type) and hematite phases were detected by X-ray diffraction after the synthesis of the composite. The structural α–β (at a temperature of 460 K) and β–γ (at a temperature of 523 K) phase transitions in the composite were indicated by the anomalies of the electrical conductivity, dielectric permittivity, and changes of activation energies of conductivity. Two phase transitions have been detected in the Li3Fe2(PO4)3 + Fe2O3 composite by 57Fe Mössbauer spectroscopy: the phase transition in Li3Fe2(PO4)3 from the paramagnetic to antiferromagnetic phase at temperature T N = 29.5 K and the Morin phase transition in Fe2O3 at temperature T M = 235 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Thangadurai V, Weppner W (2006) Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12:81–92. doi:10.1007/s11581-006-0013-7

    Article  CAS  Google Scholar 

  2. Thangadurai V, Weppner W (2002) Solid state lithium ion conductors: design considerations by thermodynamic approach. Ionics 8:281–292. doi:10.1007/BF02376081

    Article  CAS  Google Scholar 

  3. Cretin M, Fabry P (1999) Comparative study of lithium ion conductors in the system Li1+x Al x A2−x IV with AIV = Ti or Ge and 0 ≤ x ≤ 0.7 for use as Li+ sensitive membranes. J Eur Ceram Soc 19:2931–2940. doi:10.1016/S0955-2219(99)00055-2

    Article  CAS  Google Scholar 

  4. Birke P, Salam F, Weppner W (1999) A first approach to a monolithic all solid state inorganic lithium battery. Solid State Ionics 118:149–157. doi:10.1016/S0167-2738(98)00462-7

    Article  CAS  Google Scholar 

  5. Thangadurai V, Weppner W (2005) Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. J Power Sources 142:339–344. doi:10.1016/j.jpowsour.2004.11.001

    Article  CAS  Google Scholar 

  6. Yoshihisa B (2013) Process for producing iron phosphate particles and method for producing secondary cell. US Patent No. 8,404,147 B2 :1-14

  7. Cabana J, Shirakawa J, Nakayama M, Wakihara M, Grey CP (2011) Effect of ball-milling and lithium insertion on the lithium mobility and structure of Li3Fe2(PO4)3. J Mater Chem 21:10012–10020. doi:10.1039/C0JM04197A

    Article  CAS  Google Scholar 

  8. Andersson AS, Kalska B, Jonsson P, Häggström L, Nordblad P, Tellgren R, Thomas JO (2000) The magnetic structure and properties of rhombohedral Li3Fe2(PO4)3. J Mater Chem 10:2542–2547. doi:10.1039/B002218G

    Article  CAS  Google Scholar 

  9. Rousse G, Rodriguez-Carvajal J, Wurm C, Masquelier C (2001) Magnetic structural studies of the two polymorphs of Li3Fe2(PO4)3: analysis of the magnetic ground state from super-super exchange interactions. Chem Mater 13:4527–4536. doi:10.1021/cm011054q

    Article  CAS  Google Scholar 

  10. Bykov AB, Chirkin AP, Demyanets LN, Doronin SN, Genkina EA, Ivanov-shits AK, Kondratyuk IP, Maksimov BA, Melnikov OK, Muradyan LN, Simonov VI, Timofeeva VA (1990) Superionic conductors Li3M2(PO4)3 (M = Fe, Sc, Cr): synthesis, structure and electrophysical properties. Solid State Ionics 38:31–52. doi:10.1016/0167-2738(90)90442-T

    Article  CAS  Google Scholar 

  11. Sigaryov SE, Terziev VG (1993) Thermally induced lithium disorder in Li3Fe2(PO4)3. Phys Rev B 48:16252–16255. doi:10.1103/PhysRevB.48.16252

    Article  CAS  Google Scholar 

  12. Orliukas A, Vaitkus R, Kezionis A, Aukselis S (1990) Electric conductivity, dielectric permittivity and Raman scattering spectra of Li3Fe2(PO4)3 single crystals. Solid State Ionics 40(41):158–161. doi:10.1016/0167-2738(90)90311-E

    Article  Google Scholar 

  13. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. doi:10.1149/1.1837571

    Article  CAS  Google Scholar 

  14. Orliukas AF, Fung KZ, Venckutė V, Kazlauskienė V, Miškinis J, Dindune A, Kanepe Z, Ronis J, Maneikis A, Šalkus T, Kežionis A (2014) SEM/EDX, XPS, and impedance spectroscopy of LiFePO4 and LiFePO4/C ceramics. Lith J Phys 54:106–113. doi:10.3952/lithjphys.54206

    Article  CAS  Google Scholar 

  15. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. doi:10.1021/ja3091438

    Article  CAS  Google Scholar 

  16. Hashina K, Dokko K, Kanamura K (2005) Investigation on electrochemical interface between Li4Ti5O12 and Li1 + xAlxTi2 − x ( PO4)3 NASICON-type solid electrolyte. J Electrochem Soc 152:A2138–A2142. doi:10.1149/1.2041967

    Article  Google Scholar 

  17. Zhu S, Zhou H, Miyoshi T, Hibino M, Honma I, Ichihara M (2004) Self-assembly of the mesoporous electrode material Li3Fe2(PO4)3 using a cationic surfactant as the template. Adv Mater 16:2012–2017. doi:10.1002/adma.200400207

    Article  CAS  Google Scholar 

  18. Engel J, Tuller HL (2014) The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation. Phys Chem Chem Pys 16:11374–11380. doi:10.1039/c4cp01144a

    Article  CAS  Google Scholar 

  19. Kežionis A, Kazlauskas S High temperature ultra broadband impedance spectrometer. International Workshop on Impedance Spectroscopy 2013, Chemnitz, Germany, 25-27 September 2013, p 32-33

  20. Kežionis A, Kazlauskas S, Petrulionis D, Orliukas AF (2014) IEEE Trans Microwave Theory Tech 62:2456–2461. doi:10.1109/TMTT.2014.2350963

    Article  Google Scholar 

  21. Bogusz W, Dygas JR, Krok F, Kezionis A, Sobiestianskas R, Kazakevicius E, Orliukas A (2001) Electrical conductivity dispersion in Co-doped NASICON samples. Phys Status Solidi A 183:323–330. doi:10.1002/1521-396X(200102)183:2<323::AID-PSSA323>3.0.CO;2-6

    Article  CAS  Google Scholar 

  22. Godickemeier M, Michel B, Orliukas A, Bohac P, Sasaki K, Gauckler L, Heinrich H, Schwander P, Kostorz G, Hofmann H, Frei O (1994) Effect of intergranular glass films on the electrical conductivity of 3Y-TZP. J Mater Res 9:1228–1240. doi:10.1557/JMR.1994.1228

    Article  Google Scholar 

  23. Orliukas A, Bohac P, Sasaki K, Gauckler LJ (1994) The relaxation dispersion of the ionic conductivity in cubic zirconias. Solid State Ionics 72:35–38. doi:10.1016/0167-2738(94)90121-X

    Article  CAS  Google Scholar 

  24. Šalkus T, Bohnke O, Macutkevic J, Orliukas AF, Greičius S, Kežionis A, Krotkus A, Suzanovičienė R, Adomovičius R (2009) Peculiarities of ionic transport in LLTO solid electrolytes. Phys Status Solidi C 6(12):2756–2758. doi:10.1002/pssc.200982527

    Article  Google Scholar 

  25. Abadei S, Gevorgian S, Cho C-R, Grishin A (2002) Low-frequency microwave performances of laser-ablated epitaxial Na0.5K0.5NbO3 films on high-resistivity SiO2/Si substrates. J Appl Phys 91(4):2267–2276. doi:10.1063/1.1430545

    Article  CAS  Google Scholar 

  26. Goni A, Lezama L, Moreno NO, Fournes L, Olazcuaga R, Barberis GE, Rojo T (2000) Spectroscopic and magnetic properties of α-Li3Fe2(PO4)3: a two-sublattice ferrimagnet. Chem Mater 12:62–66. doi:10.1021/cm991069c

    Article  CAS  Google Scholar 

  27. Kim HS, Kim CS (2013) Spin ordering between sub-lattices in nasicon Li3Fe2(PO4)3 measured by Mössbauer spectroscopy. J Appl Phys 113:17E117-1–17E117-3. doi:10.1063/1.4794188

    Google Scholar 

  28. Bruzzone CL, Ingalls R (1983) Mössbauer-effect study of the Morin transition and atomic positions in hematite under pressure. Phys Rev B 28:2430–2440. doi:10.1103/PhysRevB.28.2430

    Article  CAS  Google Scholar 

  29. Lu HM, Meng XK (2010) Morin temperature and Néel temperature of hematite nanocrystals. J Phys Chem C 114:21291–21295. doi:10.1021/jp108703b

    Article  CAS  Google Scholar 

  30. Chen Y-L, Yang D-P (2007) Mössbauer effect in lattice dynamics: experimental techniques and applications. In: Recoilless fraction and second-order Doppler effect, 1st edn. Wiley, Weinheim, pp 177-212

  31. Baltrūnas D (1997) Quadrupole interaction of 119Sn in solid solutions of tin chalcogenides. Phys Status Solidi B 204:811–815. doi:10.1002/1521-3951(199712)204:2<811::AID-PSSB811>3.0.CO;2-0

    Article  Google Scholar 

  32. Lippens P-E, Khalifi ML, Chamas M, Perea A, Sougrati M-T, Ionica-Bousquet C, Aldon L, Olivier-Fourcade J, Jumas J-C (2012) How Mössbauer spectroscopy can improve Li-ion batteries. Hyperfine Interact 206:35–46. doi:10.1007/s10751-011-0418-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of Lithuania (Project No. TAP LLT 03/2012) and Research cooperation project of Latvian Council of Sciences (N666/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Venckutė.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orliukas, A.F., Kazakevičius, E., Reklaitis, J. et al. XRD, impedance, and Mössbauer spectroscopy study of the Li3Fe2(PO4)3 + Fe2O3 composite for Li ion batteries. Ionics 21, 2127–2136 (2015). https://doi.org/10.1007/s11581-015-1418-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1418-y

Keywords

Navigation