Skip to main content
Log in

Enhanced high-temperature cycling stability of LiNi1/3Co1/3Mn1/3O2-coated LiMn2O4 as cathode material for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To enhance the electrochemical performances of LiMn2O4 at elevated temperature, we proposed a sol–gel method to synthesize LiNi1/3Co1/3Mn1/3O2-modified LiMn2O4. The physical and electrochemical performances of pristine and LiNi1/3Co1/3Mn1/3O4-coated LiMn2O4 cathode materials were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical measurements, respectively. The results indicated that about 5–6-nm-thick layer of LiNi1/3Co1/3Mn1/3O2 formed on the surface of the LiMn2O4 powders. The modified LiMn2O4 exhibited excellent storage performance at 45, 55, and 65 °C compared to the pristine one, which was attributed to the suppression of electrolyte decomposition and the reduction of Mn dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pitchai R, Thavasi V, Mhaisalkar SG, Ramakrishna S (2011) Nanostructured cathode materials: a key for better performance in Li-ion batteries. J Mater Chem 21(30):11040–11051

    Article  CAS  Google Scholar 

  2. Zhao S, Bai Y, Ding LH, Wang B, Zhang WF (2013) Enhanced cycling stability and thermal stability of YPO4-coated LiMn2O4 cathode materials for lithium ion batteries. J Solid State Ionics 247:22–29

    Article  Google Scholar 

  3. Kim WK, Han DW, Ryu WH, Lim SJ, Kwon HS (2012) Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance. J Electrochimica Acta 71:17–21

    Article  CAS  Google Scholar 

  4. Arumugam D, Paruthimal Kalaignan G (2011) Electrochemical characterizations of surface modified LiMn2O4 cathode materials for high temperature lithium battery applications. J Thin Solid Films 520:338–343

    Article  CAS  Google Scholar 

  5. Li X (2012) Rui Yang etc, Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55 °C. J Materials Letter 66:168–171

    Article  CAS  Google Scholar 

  6. Kim D, Park S, Chae OB, Ryu JH, Kim YU, Yin RZ, Oh SM (2012) Re-deposition of manganese species on spinel LiMn2O4 electrode after Mn dissolution. J Electrochem Soc 159(3):A193–A197

    Article  CAS  Google Scholar 

  7. Gummow RJ, Dekock A, Thackeray MM (1994) Improved capacity retention in rechargeable 4 V lithium/lithium manganese oxide (spinel) cells. J Solid State Ionics 69(1):59–67

    Article  CAS  Google Scholar 

  8. Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 coils. J Electrochem Soc 143(7):2204–2211

    Article  CAS  Google Scholar 

  9. Wu XL, Kim SB (2002) Improvement of electrochemical properties of LiNi(0.5)Mn(1.5)O(4) spinel. J Power Sources 109(1):53–57

    Article  CAS  Google Scholar 

  10. Tarascon JM, Wang E, Shokoohi FK, Mckinnon WR, Colson S (1991) The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J Electrochem Soc 138(10):2859–2864

    Article  CAS  Google Scholar 

  11. Hernan L, Morales J, Sanchez L, Santos J (1999) Use of Li-M-Mn-O [M = Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries. J Solid State Ionics 118(3–4):179–185

    Article  CAS  Google Scholar 

  12. Thackeray MM, Johnson CS, Kim JS, Lauzze KC, Vaughey JT, Dietz N, Abraham D, Hackney SA, Zeltner W, Anderson MA (2003) ZrO2- and Li2ZrO3-stabilized spinel and layered electrodes for lithium batteries. J Electrochem Commun 5(9):752–758

    Article  CAS  Google Scholar 

  13. Huang B, Li X, Wang Z, Guo H, Xiong X, Wang J (2014) A novel carbamide-assistant hydrothermal process for coating Al2O3. J Alloys Compd 583:313–319

    Article  CAS  Google Scholar 

  14. Zheng ZH, Tang ZL, Zhang ZT, Shen WC, Lin YH (2002) Surface modification of Li1.03Mn1.97O4 spinels for improved capacity retention. J Solid State Ionics 148(3–4):317–321

    Article  CAS  Google Scholar 

  15. Gnanaraj JS, Pol VG, Gedanken A, Aurbach D (2003) Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method. J Electrochem Commun 5(11):940–945

    Article  CAS  Google Scholar 

  16. Wu F, Wang M, Su YF, Chen S, Xu B (2009) Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2. J Power Sources 191(2):628–632

    Article  CAS  Google Scholar 

  17. He XM, Li JJ, Cai Y, Wang YW, Ying JR, Jiang CY, Wan CR (2005) Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. J Power Sources 150:216–222

    Article  CAS  Google Scholar 

  18. Li X, Xu Y, Wang C (2009) Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode. J Alloys Compound 479:310

    Article  CAS  Google Scholar 

  19. Kim WK, Dong H (2012) Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance. J Eletrochemica Acta 71:17–21

    Article  CAS  Google Scholar 

  20. L. F, S. W, Lu Han. Enhanced electrochemical properties of LiMn2O4 cathode material coated by 5wt.% of nano-La2O3, Journal of Materials Letters 78(2012) 116-119.

  21. Liu D, He Z (2007) Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries. J Mater Letters 61:4703–4706

    Article  CAS  Google Scholar 

  22. Myung ST, Izumi K, Komaba S, Sun YK, Yashiro H, Kumagai N (2005) Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. J Chem Mater 17(14):3695–3704

    Article  CAS  Google Scholar 

  23. Jang SB, Kang SH, Amine K, Bae YC, Sun YK (2005) Synthesis and improved electrochemical performance of Al (OH)(3)-coated Li[Ni1/3Mn1/3Co1/3]O2 cathode materials at elevated temperature. J Electrochimica Acta 50(20):4168–4173

    Article  CAS  Google Scholar 

  24. Levi MD, Gamolsky K, Aurbach D, Heider U, Oesten R (2000) On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes. Electrochim Acta 45(11):1781–1789

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 50672026). This work was also supported by the Shanghai Nanotechnology Promotion Center (No. 12ZR1448800)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Mi.

Additional information

LiNi1/3Co1/3Mn1/3O2 is a new coating material on LiMn2O4. A uniform and dense layer about 5–6 nm was formed on the surface of LiMn2O4. The LiNi1/3Co1/3Mn1/3O2 coating layer significantly improves the high-temperature cycling stability of LiMn2O4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Liu, H., Wang, Y. et al. Enhanced high-temperature cycling stability of LiNi1/3Co1/3Mn1/3O2-coated LiMn2O4 as cathode material for lithium ion batteries. Ionics 21, 1835–1842 (2015). https://doi.org/10.1007/s11581-015-1371-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1371-9

Keywords

Navigation