, Volume 21, Issue 3, pp 611–616 | Cite as

Ionic mobility of (0.9)[0.75AgI:0.25AgCl]:0.1SiO2 in space charge depolarization

  • B. Keshav Rao
  • Mohan L. Verma


The analysis of ionic mobility of Ag+ ions in the nano-composite material is performed. The material is space charge polarized initially by applying a dc field ~0.5 V. The depolarization potential is recorded at various isothermal conditions in the temperature range of 300–535 K. By considering open circuit condition, drift and trapped ionic mobility are analyzed and the results are compared with the ionic mobility measured by conventional transient ionic current (TIC) and experimental techniques in the same temperature range.


Space charge depolarization Modeling Ionic mobility Transient ionic current 



The authors are grateful to the management of Shri Shankaracharya Group of Institutions (SSTC) to support in the research work.


  1. 1.
    Agrawal RC, Gupta RK, Verma ML (1998) Ionics 4:33–41CrossRefGoogle Scholar
  2. 2.
    Agrawal RC, Verma ML, Gupta RK (1998) J Phys D Appl Phys 31:2854CrossRefGoogle Scholar
  3. 3.
    Agrawal RC, Gupta RK, Verma ML, Sharma AR (1999) Indian J Pure & Appl Phys 37:235–238Google Scholar
  4. 4.
    Agrawal RC, Verma ML, Gupta RK (1999) Indian J Pure & Appl Phys 37:334–337Google Scholar
  5. 5.
    Agrawal RC, Verma Mohan L, Gupta RK, Thaker S (2000) Solid State Ion 136:473–478CrossRefGoogle Scholar
  6. 6.
    Kumar A, Chandra S (1988) In: Chowdary BVR, Radhakrishnan S (eds) Solid state Ionics. World Scientific, Singapore, p 503Google Scholar
  7. 7.
    Chandra S (1981). North Holland, AmsterdamGoogle Scholar
  8. 8.
    Laskar AL and Chandra S (1989). Academic Press, New YorkGoogle Scholar
  9. 9.
    Shahi K, Wagner JB (1982) J of Solid State Chemistry 42(2):107–119CrossRefGoogle Scholar
  10. 10.
    Maier J (1989) In: Laskar AL and Chandra S (eds). Academic Press New York, 137Google Scholar
  11. 11.
    Agrawal RC, Gupta RK (1999) J Mater Sci 34:1131CrossRefGoogle Scholar
  12. 12.
    Maekawa H, Tanaka R, Sato T, Fujimaki Y, Yamamura T (2004) Solid State Ion 175(1–4):281–285CrossRefGoogle Scholar
  13. 13.
    Maekawa H, Fujimaki Y, Shen H, Kawamura J, Yamamura T (2006) Solid State Ion 177(26–32):2711–2714CrossRefGoogle Scholar
  14. 14.
    Yamada H, Moriguchi I, Kudo T (2005) Solid State Ion 176(9–10):945–953CrossRefGoogle Scholar
  15. 15.
    Maier J (2005) Nat Mater 4(11):805–815CrossRefGoogle Scholar
  16. 16.
    Uvarov NF (2007) Russ Chem Rev 76:415CrossRefGoogle Scholar
  17. 17.
    Yaroslavtsev AB (2010) J of General Chemistry 80(3):675–687CrossRefGoogle Scholar
  18. 18.
    Uvarov NF, Ponomareva VG, Lavrova GV (2010) J of Electrochemistry 46(7):722–733Google Scholar
  19. 19.
    Watanabe M, Sanui K, Ogata N, Kobayashi T, Ontaki Z (1985) J Appl Phys 57:123CrossRefGoogle Scholar
  20. 20.
    Chandra S, Tolpadi SK, Hashmi SA (1988) Solid State Ion 28–30:651CrossRefGoogle Scholar
  21. 21.
    Verma ML (2000) Thesis Pt. Ravishankar Shukla Univ. RaipurGoogle Scholar
  22. 22.
    Verma ML, Rao BK (2011) Ionics 17:323CrossRefGoogle Scholar
  23. 23.
    Agrawal RC, Kathal K, Gupta RK (1994) Solid State Ion 74:137CrossRefGoogle Scholar
  24. 24.
    Verma ML, Rao BK, Sahu H and Singh NK (2008) Chowdari BVR (eds) Solid State Ionics, 525Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Computational Nanoionics Research Lab, Department of Applied PhysicsFET, SSGIBhilaiIndia

Personalised recommendations