Skip to main content
Log in

A technical review on gas diffusion, mechanism and medium of PEM fuel cell

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The operation of polymer electrolyte membrane (PEM)-based fuel cells involves numerous physicochemical processes and components actively governing its function and, among them, gas transport phenomena and gas diffusion layer (GDL) are noteworthy, and the present paper provides a comprehensive assessment on gas diffusion mechanism, geometry of GDL components and related modelling studies involved in GDL fabrication. The impact of GDL on diffusion of reactants, water management and the transport of ions has also been systematically dealt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pethaiah SS, Kalaignan GP, Ulaganathan M, Arunkumar J (2011) Preparation of durable nanocatalyzed MEA for PEM fuel cell applications. Ionics 17(4):361–366

    CAS  Google Scholar 

  2. Chiu L-Y, Diong B, Gemmen RS (2004) An improved small-signal model of the dynamic behavior of PEM fuel cells. IEEE Trans Ind Appl 40(4):970–977

    Google Scholar 

  3. Tang H, Peikang S, Jiang SP, Wang F, Pan M (2007) A degradation study of Nafion proton exchange membrane of PEM fuel cells. J Power Sources 170(1):85–92. doi:10.1016/j.jpowsour.2007.03.061

    CAS  Google Scholar 

  4. Niu X-D, Munekata T, Hyodo S-A, Suga K (2007) An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model. J Power Sources 172(2):542–552

    CAS  Google Scholar 

  5. Berning T, Lu DM, Djilali N (2002) Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J Power Sources 106(1–2):284–294. doi:10.1016/S0378-7753(01)01057-6

    CAS  Google Scholar 

  6. Neergat M, Shukla A (2002) Effect of diffusion-layer morphology on the performance of solid-polymer-electrolyte direct methanol fuel cells. J Power Sources 104(2):289–294

    CAS  Google Scholar 

  7. Secanell M, Songprakorp R, Djilali N, Suleman A (2010) Optimization of a proton exchange membrane fuel cell membrane electrode assembly. Struct Multidiscip Optim 40(1–6):563–583

    Google Scholar 

  8. Shimpalee S, Beuscher U, Van Zee JW (2007) Analysis of GDL flooding effects on PEMFC performance. Electrochim Acta 52(24):6748–6754. doi:10.1016/j.electacta.2007.04.115

    CAS  Google Scholar 

  9. Cho J, Oh H, Park J, Min K, Lee E, Jyoung J-Y (2014) Effect of the micro porous layer design on the dynamic performance of a proton exchange membrane fuel cell. Int J Hydrog Energy 39(1):459–468

    CAS  Google Scholar 

  10. Wilson MS, Valerio JA, Gottesfeld S (1995) Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim Acta 40(3):355–363

    CAS  Google Scholar 

  11. Spiegel C (2011) PEM fuel cell modeling and simulation using MATLAB. Academic

  12. Jordan L, Shukla A, Behrsing T, Avery N, Muddle B, Forsyth M (2000) Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure. J Appl Electrochem 30(6):641–646

    CAS  Google Scholar 

  13. Gurau V, Bluemle MJ, De Castro ES, Tsou Y-M, Zawodzinski TA Jr, Mann JA Jr (2007) Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 2. Absolute permeability. J Power Sources 165(2):793–802. doi:10.1016/j.jpowsour.2006.12.068

    CAS  Google Scholar 

  14. Wishart J, Dong Z, Secanell M (2006) Optimization of a PEM fuel cell system based on empirical data and a generalized electrochemical semi-empirical model. J Power Sources 161(2):1041–1055

    CAS  Google Scholar 

  15. Paganin V, Ticianelli E, Gonzalez E (1996) Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. J Appl Electrochem 26(3):297–304

    CAS  Google Scholar 

  16. Tan Z, Jia L, Zhang Z (2011) A study on the transport process in gas diffusion layer of proton exchange membrane fuel cells. J Therm Sci 20(5):449–453

    CAS  Google Scholar 

  17. Rohling J, Shen J, Wang C, Zhou J, Gu C (2007) Determination of binary diffusion coefficients of gases using photothermal deflection technique. Appl Phys B 87(2):355–362

    CAS  Google Scholar 

  18. Johnson MF, Stewart WE (1965) Pore structure and gaseous diffusion in solid catalysts. J Catal 4(2):248–252

    CAS  Google Scholar 

  19. Nam JH, Kaviany M (2003) Effective diffusivity and water-saturation distribution in single-and two-layer PEMFC diffusion medium. Int J Heat Mass Transf 46(24):4595–4611

    CAS  Google Scholar 

  20. Pharoah J, Karan K, Sun W (2006) On effective transport coefficients in PEM fuel cell electrodes: anisotropy of the porous transport layers. J Power Sources 161(1):214–224

    CAS  Google Scholar 

  21. Liu F, Wang C-Y (2006) Optimization of cathode catalyst layer for direct methanol fuel cells: part II: computational modeling and design. Electrochim Acta 52(3):1409–1416

    CAS  Google Scholar 

  22. Kast W, Hohenthanner C-R (2000) Mass transfer within the gas-phase of porous media. Int J Heat Mass Transf 43(5):807–823

    CAS  Google Scholar 

  23. Djilali N, Lu D (2002) Influence of heat transfer on gas and water transport in fuel cells. Int J Therm Sci 41(1):29–40

    CAS  Google Scholar 

  24. Martínez-Rodríguez MJ, Cui T, Shimpalee S, Seraphin S, Duong B, Van Zee JW (2012) Effect of microporous layer on MacMullin number of carbon paper gas diffusion layer. J Power Sources 207:91–100. doi:10.1016/j.jpowsour.2012.01.132

    Google Scholar 

  25. Van Brakel J, Heertjes P (1974) Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int J Heat Mass Transf 17(9):1093–1103

    Google Scholar 

  26. Springer T, Zawodzinski T, Wilson M, Gottesfeld S (1996) Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc 143(2):587–599

    CAS  Google Scholar 

  27. Gostick JT, Fowler MW, Pritzker MD, Ioannidis MA, Behra LM (2006) In-plane and through-plane gas permeability of carbon fiber electrode backing layers. J Power Sources 162(1):228–238. doi:10.1016/j.jpowsour.2006.06.096

    CAS  Google Scholar 

  28. Tamayol A, Bahrami M (2011) In-plane gas permeability of proton exchange membrane fuel cell gas diffusion layers. J Power Sources 196(7):3559–3564

    CAS  Google Scholar 

  29. Ahmed DH, Sung HJ, Bae J (2008) Effect of GDL permeability on water and thermal management in PEMFCs—I. Isotropic and anisotropic permeability. Int J Hydrog Energy 33(14):3767–3785

    CAS  Google Scholar 

  30. Fishman Z, Hinebaugh J, Bazylak A (2010) Microscale tomography investigations of heterogeneous porosity distributions of PEMFC GDLs. J Electrochem Soc 157(11):B1643–B1650

    CAS  Google Scholar 

  31. Koido T, Furusawa T, Moriyama K, Takato K (2006) Two-phase transport properties and transport simulation of the gas diffusion layer of a PEFC. ECS Trans 3(1):425–434

    CAS  Google Scholar 

  32. Hussaini I, Wang C (2010) Measurement of relative permeability of fuel cell diffusion media. J Power Sources 195(12):3830–3840

    CAS  Google Scholar 

  33. Feser J, Prasad A, Advani S (2006) Experimental characterization of in-plane permeability of gas diffusion layers. J Power Sources 162(2):1226–1231

    CAS  Google Scholar 

  34. Benziger J, Nehlsen J, Blackwell D, Brennan T, Itescu J (2005) Water flow in the gas diffusion layer of PEM fuel cells. J Membr Sci 261(1):98–106

    CAS  Google Scholar 

  35. Rofaiel A, Ellis J, Challa P, Bazylak A (2012) Heterogeneous through-plane distributions of polytetrafluoroethylene in polymer electrolyte membrane fuel cell gas diffusion layers. J Power Sources 201:219–225

    CAS  Google Scholar 

  36. Hirschorn B, Tribollet B, Orazem ME (2008) On selection of the perturbation amplitude required to avoid nonlinear effects in impedance measurements. Isr J Chem 48(3–4):133–142

    CAS  Google Scholar 

  37. Wang Y, Wang C-Y, Chen K (2007) Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochim Acta 52(12):3965–3975

    CAS  Google Scholar 

  38. Stampino PG, Omati L, Dotelli G (2011) Electrical performance of PEM fuel cells with different gas diffusion layers. J Fuel Cell Sci Technol 8(4):041005

    Google Scholar 

  39. Sasikumar G, Ryu H (2003) Comparison of electrode backing materials for polymer electrolyte membrane fuel cells. J Korean Electrochem Soc 6(No.3):183–186

    CAS  Google Scholar 

  40. Liao Y-K, Ko T-H, Liu C-H (2008) Performance of a polymer electrolyte membrane fuel cell with fabricated carbon fiber cloth electrode. Energy Fuel 22(5):3351–3354

    CAS  Google Scholar 

  41. Williams MV, Begg E, Bonville L, Kunz HR, Fenton JM (2004) Characterization of gas diffusion layers for PEMFC. J Electrochem Soc 151(8):A1173–A1180

    CAS  Google Scholar 

  42. Park S, Popov BN (2011) Effect of a GDL based on carbon paper or carbon cloth on PEM fuel cell performance. Fuel 90(1):436–440

    CAS  Google Scholar 

  43. Sahu A, Nishanth K, Selvarani G, Sridhar P, Pitchumani S, Shukla A (2009) Polymer electrolyte fuel cells employing electrodes with gas-diffusion layers of mesoporous carbon derived from a sol–gel route. Carbon 47(1):102–108

    CAS  Google Scholar 

  44. Xie Z-Y, Jin G-Y, Zhang M, Su Z-A, Zhang M-Y, Chen J-X, Huang Q-Z (2010) Improved properties of carbon fiber paper as electrode for fuel cell by coating pyrocarbon via CVD method. Trans Nonferrous Metals Soc China 20(8):1412–1417

    CAS  Google Scholar 

  45. Wang C-Y (2004) Fundamental models for fuel cell engineering. Chem Rev 104(10):4727–4766

    CAS  Google Scholar 

  46. Du C, Wang B, Cheng X (2009) Hierarchy carbon paper for the gas diffusion layer of proton exchange membrane fuel cells. J Power Sources 187(2):505–508. doi:10.1016/j.jpowsour.2008.11.046

    CAS  Google Scholar 

  47. Fushinobu K, Takahashi D, Okazaki K (2006) Micromachined metallic thin films for the gas diffusion layer of PEFCs. J Power Sources 158(2):1240–1245

    CAS  Google Scholar 

  48. Hottinen T, Mikkola M, Mennola T, Lund P (2003) Titanium sinter as gas diffusion backing in PEMFC. J Power Sources 118(1):183–188

    CAS  Google Scholar 

  49. Modroukas D, Modi V, Fréchette LG (2005) Micromachined silicon structures for free-convection PEM fuel cells. J Micromech Microeng 15(9):S193

    CAS  Google Scholar 

  50. Yi P, Peng L, Lai X, Li M, Ni J (2012) Investigation of sintered stainless steel fiber felt as gas diffusion layer in proton exchange membrane fuel cells. Int J Hydrog Energy 37(15):11334–11344. doi:10.1016/j.ijhydene.2012.04.161

    CAS  Google Scholar 

  51. Glora M, Wiener M, Petričević R, Pröbstle H, Fricke J (2001) Integration of carbon aerogels in PEM fuel cells. J Non-Cryst Solids 285(1):283–287

    CAS  Google Scholar 

  52. Wang J, Glora M, Petricevic R, Saliger R, Proebstle H, Fricke J (2001) Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J Porous Mater 8(2):159–165

    CAS  Google Scholar 

  53. Roshandel R, Farhanieh B, Saievar-Iranizad E (2005) The effects of porosity distribution variation on PEM fuel cell performance. Renew Energy 30(10):1557–1572

    CAS  Google Scholar 

  54. Zhang F-Y, Advani SG, Prasad AK (2008) Performance of a metallic gas diffusion layer for PEM fuel cells. J Power Sources 176(1):293–298

    CAS  Google Scholar 

  55. Ren X, Gottesfeld S (2001) Electro-osmotic drag of water in poly (perfluorosulfonic acid) membranes. J Electrochem Soc 148(1):A87–A93

    CAS  Google Scholar 

  56. Staiti P, Poltarzewski Z, Alderucci V, Maggio G, Giordano N, Fasulo A (1992) Influence of electrodic properties on water management in a solid polymer electrolyte fuel cell. J Appl Electrochem 22(7):663–667

    CAS  Google Scholar 

  57. Quick C, Ritzinger D, Lehnert W, Hartnig C (2009) Characterization of water transport in gas diffusion media. J Power Sources 190(1):110–120

    CAS  Google Scholar 

  58. Bevers D, Rogers R, Von Bradke M (1996) Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells. J Power Sources 63(2):193–201

    CAS  Google Scholar 

  59. Park G-G, Sohn Y-J, Yang T-H, Yoon Y-G, Lee W-Y, Kim C-S (2004) Effect of PTFE contents in the gas diffusion media on the performance of PEMFC. J Power Sources 131(1):182–187

    CAS  Google Scholar 

  60. Prasanna M, Ha H, Cho E, Hong S-A, Oh I-H (2004) Influence of cathode gas diffusion media on the performance of the PEMFCs. J Power Sources 131(1):147–154

    CAS  Google Scholar 

  61. Lim C, Wang C (2004) Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim Acta 49(24):4149–4156

    CAS  Google Scholar 

  62. Lin G, Van Nguyen T (2005) Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J Electrochem Soc 152(10):A1942–A1948

    CAS  Google Scholar 

  63. Park S, Lee J-W, Popov BN (2008) Effect of PTFE content in microporous layer on water management in PEM fuel cells. J Power Sources 177(2):457–463

    CAS  Google Scholar 

  64. Pai Y, Ke J, Huang H, Lee C, Zen J, Shieu F (2006) CF4 plasma treatment for preparing gas diffusion layers in membrane electrode assemblies. J Power Sources 161(1):275–281

    CAS  Google Scholar 

  65. Yoon GH, Park SB, Kim EH, Kim S, Park Y-I (2007) Effect of fluoroalkylsilane coating on the properties of gas diffusion layer in PEMFCs. In: Meeting Abstracts. vol 20. The Electrochemical Society, pp 898–898

  66. Thoben B, Siebke A (2004) Influence of different gas diffusion layers on the water management of the PEFC cathode. J New Mater Electrochem Syst 7(1):13–20

    CAS  Google Scholar 

  67. Lee H-K, Park J-H, Kim D-Y, Lee T-H (2004) A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC. J Power Sources 131(1):200–206

    CAS  Google Scholar 

  68. Mathias M, Roth J, Fleming J, Lehnert W (2003) Diffusion media materials and characterisation. Handbook of fuel cells

  69. Rajalakshmi N, Velayutham G, Ramya K, Subramaniyam C, Dhathathreyan K Characterisation and optimisation of low cost activated carbon fabric as a substrate layer for PEMFC electrodes. In: ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology, 2005. American Society of Mechanical Engineers, pp 169–173

  70. Pasaogullari U, Wang C-Y (2004) Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electrochim Acta 49(25):4359–4369

    CAS  Google Scholar 

  71. Nakajima H, Konomi T, Kitahara T (2007) Direct water balance analysis on a polymer electrolyte fuel cell (PEFC): effects of hydrophobic treatment and micro-porous layer addition to the gas diffusion layer of a PEFC on its performance during a simulated start-up operation. J Power Sources 171(2):457–463. doi:10.1016/j.jpowsour.2007.06.004

    CAS  Google Scholar 

  72. Weber AZ, Newman J (2005) Effects of microporous layers in polymer electrolyte fuel cells. J Electrochem Soc 152(4):A677–A688

    CAS  Google Scholar 

  73. Ihonen J, Mikkola M, Lindbergh G (2004) Flooding of gas diffusion backing in PEFCs physical and electrochemical characterization. J Electrochem Soc 151(8):A1152–A1161

    CAS  Google Scholar 

  74. Velayutham G, Kaushik J, Rajalakshmi N, Dhathathreyan K (2007) Effect of PTFE content in gas diffusion media and microlayer on the performance of PEMFC tested under ambient pressure. Fuel Cells 7(4):314–318

    CAS  Google Scholar 

  75. Wang X, Zhang H, Zhang J, Xu H, Tian Z, Chen J, Zhong H, Liang Y, Yi B (2006) Micro-porous layer with composite carbon black for PEM fuel cells. Electrochim Acta 51(23):4909–4915

    CAS  Google Scholar 

  76. Giorgi L, Antolini E, Pozio A, Passalacqua E (1998) Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim Acta 43(24):3675–3680

    CAS  Google Scholar 

  77. Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L (1998) Influence of the structure in low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim Acta 43(24):3665–3673

    CAS  Google Scholar 

  78. Chen J, Matsuura T, Hori M (2004) Novel gas diffusion layer with water management function for PEMFC. J Power Sources 131(1):155–161

    CAS  Google Scholar 

  79. Karan K, Atiyeh H, Phoenix A, Halliop E, Pharoah J, Peppley B (2007) An experimental investigation of water transport in PEMFCs the role of microporous layers. Electrochem Solid-State Lett 10(2):B34–B38

    CAS  Google Scholar 

  80. Lin G, Van Nguyen T (2006) A two-dimensional two-phase model of a PEM fuel cell. J Electrochem Soc 153(2):A372–A382

    CAS  Google Scholar 

  81. Ong AL, Bottino A, Capannelli G, Comite A (2008) Effect of preparative parameters on the characteristic of poly (vinylidene fluoride)-based microporous layer for proton exchange membrane fuel cells. J Power Sources 183(1):62–68

    CAS  Google Scholar 

  82. Chen J, Xu H, Zhang H, Yi B (2008) Facilitating mass transport in gas diffusion layer of PEMFC by fabricating micro-porous layer with dry layer preparation. J Power Sources 182(2):531–539

    CAS  Google Scholar 

  83. Hung T, Huang J, Chuang H, Bai S, Lai Y, Chen-Yang Y (2008) Highly efficient single-layer gas diffusion layers for the proton exchange membrane fuel cell. J Power Sources 184(1):165–171

    CAS  Google Scholar 

  84. Andersen SM, Borghei M, Lund P, Elina Y-R, Pasanen A, Kauppinen E, Ruiz V, Kauranen P, Skou EM (2013) Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells. Solid State Ionics 231:94–101

    CAS  Google Scholar 

  85. Passalacqua E, Squadrito G, Lufrano F, Patti A, Giorgi L (2001) Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes. J Appl Electrochem 31(4):449–454

    CAS  Google Scholar 

  86. Jordan L, Shukla A, Behrsing T, Avery N, Muddle B, Forsyth M (2000) Diffusion layer parameters influencing optimal fuel cell performance. J Power Sources 86(1):250–254

    CAS  Google Scholar 

  87. Antolini E, Passos R, Ticianelli EA (2002) Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells. J Power Sources 109(2):477–482

    CAS  Google Scholar 

  88. Park G-G, Sohn Y-J, Yim S-D, Yang T-H, Yoon Y-G, Lee W-Y, Eguchi K, Kim C-S (2006) Adoption of nano-materials for the micro-layer in gas diffusion layers of PEMFCs. J Power Sources 163(1):113–118

    CAS  Google Scholar 

  89. Kannan AM, Menghal A, Barsukov IV (2006) Gas diffusion layer using a new type of graphitized nano-carbon PUREBLACK® for proton exchange membrane fuel cells. Electrochem Commun 8(5):887–891

    CAS  Google Scholar 

  90. Song Y, Wei Y, Xu H, Williams M, Liu Y, Bonville LJ, Russell Kunz H, Fenton JM (2005) Improvement in high temperature proton exchange membrane fuel cells cathode performance with ammonium carbonate. J Power Sources 141(2):250–257

    CAS  Google Scholar 

  91. Park S, Lee J-W, Popov BN (2006) Effect of carbon loading in microporous layer on PEM fuel cell performance. J Power Sources 163(1):357–363

    CAS  Google Scholar 

  92. Han M, Chan S, Jiang S (2006) Development of carbon-filled gas diffusion layer for polymer electrolyte fuel cells. J Power Sources 159(2):1005–1014

    CAS  Google Scholar 

  93. Qi Z, Kaufman A (2002) Improvement of water management by a microporous sublayer for PEM fuel cells. J Power Sources 109(1):38–46

    CAS  Google Scholar 

  94. Yan W-M, Hsueh C-Y, Soong C-Y, Chen F, Cheng C-H, Mei S-C (2007) Effects of fabrication processes and material parameters of GDL on cell performance of PEM fuel cell. Int J Hydrog Energy 32(17):4452–4458

    CAS  Google Scholar 

  95. Song J, Cha S, Lee W (2001) Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method. J Power Sources 94(1):78–84

    CAS  Google Scholar 

  96. Wang X, Zhang H, Zhang J, Xu H, Zhu X, Chen J, Yi B (2006) A bi-functional micro-porous layer with composite carbon black for PEM fuel cells. J Power Sources 162(1):474–479

    CAS  Google Scholar 

  97. Lufrano F, Passalacqua E, Squadrito G, Patti A, Giorgi L (1999) Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs. J Appl Electrochem 29(4):445–448

    CAS  Google Scholar 

  98. Kong CS, Kim D-Y, Lee H-K, Shul Y-G, Lee T-H (2002) Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells. J Power Sources 108(1):185–191

    CAS  Google Scholar 

  99. Cindrella L, Kannan A, Lin J, Saminathan K, Ho Y, Lin C, Wertz J (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194(1):146–160

    CAS  Google Scholar 

  100. Janssen GJM, Overvelde MLJ (2001) Water transport in the proton-exchange-membrane fuel cell: measurements of the effective drag coefficient. J Power Sources 101(1):117–125. doi:10.1016/S0378-7753(01)00708-X

    CAS  Google Scholar 

  101. Latorrata S, Stampino PG, Amici E, Pelosato R, Cristiani C, Dotelli G (2012) Effect of rheology controller agent addition to micro-porous layers on PEMFC performances. Solid State Ionics 216:73–77. doi:10.1016/j.ssi.2012.03.030

    CAS  Google Scholar 

  102. Chebbi R, Wan Daud WR, Mohamad AB, Kadhum AAH (2011) Review of parameters affecting performance of (Pt/C) electrode for proton exchange membrane fuel cells (PEMFCS). Adv Mater Res 233:43–49

    Google Scholar 

  103. Selvarani G, Sahu A, Sridhar P, Pitchumani S, Shukla A (2008) Effect of diffusion-layer porosity on the performance of polymer electrolyte fuel cells. J Appl Electrochem 38(3):357–362

    CAS  Google Scholar 

  104. Tang H, Wang S, Pan M, Yuan R (2007) Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells. J Power Sources 166(1):41–46

    CAS  Google Scholar 

  105. Kitahara T, Konomi T, Nakajima H (2010) Microporous layer coated gas diffusion layers for enhanced performance of polymer electrolyte fuel cells. J Power Sources 195(8):2202–2211

    CAS  Google Scholar 

  106. Tseng C-J, Lo S-K (2010) Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC. Energy Convers Manag 51(4):677–684

    CAS  Google Scholar 

  107. W-k L, Ho C-H, Van Zee J, Murthy M (1999) The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. J Power Sources 84(1):45–51. doi:10.1016/S0378-7753(99)00298-0

    Google Scholar 

  108. Senthil Velan V, Velayutham G, Rajalakshmi N, Dhathathreyan K (2014) Influence of compressive stress on the pore structure of carbon cloth based gas diffusion layer investigated by capillary flow porometry. Int J Hydrog Energy 39(4):1752–1759

    CAS  Google Scholar 

  109. Lee C, Mérida W (2007) Gas diffusion layer durability under steady-state and freezing conditions. J Power Sources 164(1):141–153

    CAS  Google Scholar 

  110. Radhakrishnan A, Lu Z, Kandlikar SG (2010) Effective thermal conductivity of gas diffusion layers used in PEMFC: measured with guarded-hot-plate method and predicted by a fractal model. ECS Trans 33(1):1163–1176

    CAS  Google Scholar 

  111. Xu G, LaManna JM, Clement JT, Mench MM (2014) Direct measurement of through-plane thermal conductivity of partially saturated fuel cell diffusion media. J Power Sources 256:212–219. doi:10.1016/j.jpowsour.2014.01.015

    CAS  Google Scholar 

  112. Yablecki J, Nabovati A, Bazylak A (2012) Modeling the effective thermal conductivity of an anisotropic gas diffusion layer in a polymer electrolyte membrane fuel cell. J Electrochem Soc 159(6):B647–B653

    CAS  Google Scholar 

  113. Weber AZ, Hickner MA (2008) Modeling and high-resolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode assembly. Electrochim Acta 53(26):7668–7674. doi:10.1016/j.electacta.2008.05.018

    CAS  Google Scholar 

  114. Wang Y, Wang C-Y (2006) A nonisothermal, two-phase model for polymer electrolyte fuel cells. J Electrochem Soc 153(6):A1193–A1200

    CAS  Google Scholar 

  115. Khandelwal M, Mench MM (2006) Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. J Power Sources 161(2):1106–1115. doi:10.1016/j.jpowsour.2006.06.092

    CAS  Google Scholar 

  116. Sadeghi E, Djilali N, Bahrami M (2011) Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: effect of compressive load. J Power Sources 196(1):246–254

    CAS  Google Scholar 

  117. Escribano S, Blachot J-F, Ethève J, Morin A, Mosdale R (2006) Characterization of PEMFCs gas diffusion layers properties. J Power Sources 156(1):8–13

    CAS  Google Scholar 

  118. Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184(1):104–119. doi:10.1016/j.jpowsour.2008.06.006

    CAS  Google Scholar 

  119. Chen G, Zhang H, Ma H, Zhong H (2009) Electrochemical durability of gas diffusion layer under simulated proton exchange membrane fuel cell conditions. Int J Hydrog Energy 34(19):8185–8192

    CAS  Google Scholar 

  120. Wood DL III, Borup RL (2009) Durability aspects of gas-diffusion and microporous layers. In: Polymer electrolyte fuel cell durability. Springer, New York, pp 159–195

    Google Scholar 

  121. Yi P, Ni J, Peng L, Lai X (2011) A numerical model for predicting gas diffusion layer failure in proton exchange membrane fuel cells. J Fuel Cell Sci Technol 8(1):011011

    Google Scholar 

  122. Bernardi DM, Verbrugge MW (1991) Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AICHE J 37(8):1151–1163

    CAS  Google Scholar 

  123. Bernardi DM, Verbrugge MW (1992) A mathematical model of the solid‐polymer‐electrolyte fuel cell. J Electrochem Soc 139(9):2477–2491

    CAS  Google Scholar 

  124. Springer T, Wilson M, Gottesfeld S (1993) Modeling and experimental diagnostics in polymer electrolyte fuel cells. J Electrochem Soc 140(12):3513–3526

    CAS  Google Scholar 

  125. Tobias CW (1959) Effect of gas evolution on current distribution and ohmic resistance in electrolyzers. J Electrochem Soc 106(9):833–838

    CAS  Google Scholar 

  126. Chiang M-S, Chu H-S (2006) Numerical investigation of transport component design effect on a proton exchange membrane fuel cell. J Power Sources 160(1):340–352

    CAS  Google Scholar 

  127. Um S, Wang C (2004) Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. J Power Sources 125(1):40–51

    CAS  Google Scholar 

  128. Gurau V, Mann JA (2010) Effect of interfacial phenomena at the gas diffusion layer-channel interface on the water evolution in a PEMFC. J Electrochem Soc 157(4):B512–B521

    CAS  Google Scholar 

  129. Zhou P, Wu C (2007) Numerical study on the compression effect of gas diffusion layer on PEMFC performance. J Power Sources 170(1):93–100

    CAS  Google Scholar 

  130. Wang Z, Wang C, Chen K (2001) Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J Power Sources 94(1):40–50

    CAS  Google Scholar 

  131. Gurau V, Zawodzinski TA, Mann JA (2008) Two-phase transport in PEM fuel cell cathodes. J Fuel Cell Sci Technol 5(2):021009

    Google Scholar 

  132. Hartnig C, Manke I, Kuhn R, Kardjilov N, Banhart J, Lehnert W (2008) Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells. Appl Phys Lett 92(13):134106

    Google Scholar 

  133. Pasaogullari U, Wang C-Y (2005) Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. J Electrochem Soc 152(2):A380–A390

    CAS  Google Scholar 

  134. Meng H, Wang C-Y (2005) Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells. J Electrochem Soc 152(9):A1733–A1741

    CAS  Google Scholar 

  135. Grigoriev S, Kalinnikov A, Fateev V, Wragg A (2006) Numerical optimization of bipolar plates and gas diffusion layers for PEM fuel cells. J Appl Electrochem 36(9):991–996

    CAS  Google Scholar 

  136. Nitta I, Karvonen S, Himanen O, Mikkola M (2008) Modelling the effect of inhomogeneous compression of GDL on local transport phenomena in a PEM fuel cell. Fuel Cells 8(6):410–421

    CAS  Google Scholar 

  137. Su Z, Liu C, Chang H, Li C, Huang K, Sui P (2008) A numerical investigation of the effects of compression force on PEM fuel cell performance. J Power Sources 183(1):182–192

    CAS  Google Scholar 

  138. Dotelli G, Omati L, Gallo Stampino P, Grassini P, Brivio D (2011) Investigation of gas diffusion layer compression by electrochemical impedance spectroscopy on running polymer electrolyte membrane fuel cells. J Power Sources 196(21):8955–8966. doi:10.1016/j.jpowsour.2011.01.078

    CAS  Google Scholar 

  139. Pasaogullari U, Wang C (2004) Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J Electrochem Soc 151(3):A399–A406

    CAS  Google Scholar 

  140. Tabe Y, Lee Y, Chikahisa T, Kozakai M (2009) Numerical simulation of liquid water and gas flow in a channel and a simplified gas diffusion layer model of polymer electrolyte membrane fuel cells using the lattice Boltzmann method. J Power Sources 193(1):24–31. doi:10.1016/j.jpowsour.2009.01.068

    CAS  Google Scholar 

  141. Rama P, Liu Y, Chen R, Ostadi H, Jiang K, Zhang X, Gao Y, Grassini P, Brivio D (2011) Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through X‐ray computer micro‐tomography and single‐phase lattice Boltzmann simulation. Int J Numer Methods Fluids 67(4):518–530

    CAS  Google Scholar 

  142. Kim Y, Kang S (2010) Time delay control for fuel cells with bidirectional DC/DC converter and battery. Int J Hydrog Energy 35(16):8792–8803

    CAS  Google Scholar 

  143. Cho J, Park J, Oh H, Min K, Lee E, Jyoung J-Y (2013) Analysis of the transient response and durability characteristics of a proton exchange membrane fuel cell with different micro-porous layer penetration thicknesses. Appl Energy 111:300–309. doi:10.1016/j.apenergy.2013.05.022

    Google Scholar 

  144. Mändle M, Wilde P (2001) SGL Carbon Group. SGL TECHNOLOGIES GmbH, Private communication

  145. Bultel Y, Wiezell K, Jaouen F, Ozil P, Lindbergh G (2005) Investigation of mass transport in gas diffusion layer at the air cathode of a PEMFC. Electrochim Acta 51(3):474–488. doi:10.1016/j.electacta.2005.05.007

    CAS  Google Scholar 

  146. Baker DR, Wieser C, Neyerlin KC, Murphy MW (2006) The use of limiting current to determine transport resistance in PEM fuel cells. ECS Trans 3(1):989–999

    CAS  Google Scholar 

  147. Berning T, Djilali N (2003) A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J Electrochem Soc 150(12):A1589–A1598

    CAS  Google Scholar 

  148. Gloaguen F, Durand R (1997) Simulations of PEFC cathodes: an effectiveness factor approach. J Appl Electrochem 27(9):1029–1035

    CAS  Google Scholar 

  149. Yu HM, Ziegler C, Oszcipok M, Zobel M, Hebling C (2006) Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 51(7):1199–1207. doi:10.1016/j.electacta.2005.06.036

    CAS  Google Scholar 

  150. Li H, Tang Y, Wang Z, Shi Z, Wu S, Song D, Zhang J, Fatih K, Zhang J, Wang H, Liu Z, Abouatallah R, Mazza A (2008) A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources 178(1):103–117. doi:10.1016/j.jpowsour.2007.12.068

    CAS  Google Scholar 

  151. Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89(18):185901

    Google Scholar 

Download references

Acknowledgments

This work was supported by the IBTec, Auckland University of Technology (AUT) grant by the Doctoral Fellowship and the authors would like to acknowledge their support. The authors are also grateful to Ms. Jo Stone for an effective proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunkumar Jayakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakumar, A., Sethu, S.P., Ramos, M. et al. A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics 21, 1–18 (2015). https://doi.org/10.1007/s11581-014-1322-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1322-x

Keywords

Navigation